Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs

  • James Brannick
  • Yao Chen
  • Xiaozhe Hu
  • Ludmil ZikatanovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 45)


We design and implement a parallel algebraic multigrid method for isotropic graph Laplacian problems on multicore graphical processing units (GPUs). The proposed AMG method is based on the aggregation framework. The setup phase of the algorithm uses a parallel maximal independent set algorithm in forming aggregates, and the resulting coarse-level hierarchy is then used in a K-cycle iteration solve phase with a 1-Jacobi smoother. Numerical tests of a parallel implementation of the method for graphics processors are presented to demonstrate its effectiveness.


Multigrid methods Unsmoothed aggregation Adaptive aggregation 


  1. 1.
    Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods, I. Numer. Math. 56(2–3), 157–177 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods, II. SIAM J. Numer. Anal. 27(6), 1569–1590 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Technical Report NVR-2008-004, NVIDIA Corporation, 2008Google Scholar
  4. 4.
    Bell, N., Dalton, S., Olson, L.: Exposing fine-grained parallelism in algebraic multigrid methods. SIAM J. Sci. Comput. 34(4), C123–C152 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Blelloch, G.E.: Prefix sums and their applications. In: Synthesis of Parallel Algorithms. Morgan Kaufmann, Los Altos (1993)Google Scholar
  6. 6.
    Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the gpu: conjugate gradients and multigrid. ACM Trans. Graph. 22(3), 917–924 (2003)CrossRefGoogle Scholar
  7. 7.
    Brezina, M., Vassilevski, P.S.: Smoothed aggregation spectral element agglomeration AMG: SA-ρAMGe. In: Proceedings of the 8th International Conference on Large-Scale Scientific Computing. Lecture Notes in Computer Science, vol. 7116, pp. 3–15. Springer, Berlin (2012)Google Scholar
  8. 8.
    Chow, E., Falgout, R., Hu, J., Tuminaro, R., Yang, U.: A survey of parallelization techniques for multigrid solvers. In: Parallel Processing for Scientific Computing, vol. 20, pp. 179–201. SIAM, Philadelphia (2006)Google Scholar
  9. 9.
    Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E.: Coarse-grid selection for parallel algebraic multigrid. In: Solving Irregularly Structured Problems in Parallel. Lecture Notes in Computer Science, vol. 1457, pp. 104–115. Springer, Berlin (1998)Google Scholar
  10. 10.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Wiley Classics Library. Wiley, New York (1989)CrossRefGoogle Scholar
  11. 11.
    De Sterck, H., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic multigrid preconditioners. SIAM. J. Matrix Anal. Appl. 27(4), 1019–1039 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Emans, M., Liebmann, M., Basara, B.: Steps towards GPU accelerated aggregation AMG. In: 2012 11th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 79–86 (2012)Google Scholar
  13. 13.
    Feng, Z., Zeng, Z.: Parallel multigrid preconditioning on graphics processing units (gpus) for robust power grid analysis. In: Proceedings of the 47th Design Automation Conference, DAC ’10, pp. 661–666. ACM, New York (2010)Google Scholar
  14. 14.
    Feng, C., Shu, S., Xu, J., Zhang, C.-S.: Numerical Study of Geometric Multi- grid Methods on CPU-GPU Heterogeneous Computers. ArXiv e-prints (2012), arXiv:1208.4247.
  15. 15.
    Garland, M., Bell, N.: CUSP: Generic parallel algorithms for sparse matrix and graph computations. CUSP Software Library. (2010).
  16. 16.
    Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker, C., Turek, S.: Using GPUs to improve multigrid solver performance on a cluster. Int. J. Comput. Sci. Eng. 4(1), 36–55 (2008)Google Scholar
  17. 17.
    Goodnight, N., Woolley, C., Lewin, G., Luebke, D., Humphreys, G.: A multigrid solver for boundary value problems using programmable graphics hardware. ACM SIGGRAPH 2005 Courses on SIGGRAPH 05, p. 193 (2003)Google Scholar
  18. 18.
    Grossauer, H., Thoman, P.: GPU-based multigrid: Real-time performance in high resolution nonlinear image processing. Int. J. Comput. Vis. 5008, 141–150 (2008)Google Scholar
  19. 19.
    Haase, G., Liebmann, M., Douglas, C., Plank, G.: A parallel algebraic multigrid solver on graphics processing units. In: High Performance Computing and Applications, Springer, Berlin, Heidelberg, New York, 5938, 38–47 (2010)CrossRefGoogle Scholar
  20. 20.
    Halmos, P.R.: Finite-dimensional vector spaces. In: Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (1974)Google Scholar
  21. 21.
    Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Joubert, W., Cullum, J.: Scalable algebraic multigrid on 3500 processors. Electron. Trans. Numer. Anal. 23, 105–128 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. J. Parallel Distrib. Comput. 48, 71–85 (1998)CrossRefGoogle Scholar
  24. 24.
    Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM Rev. 41(2), 278–300 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kolev, T.V., Vassilevski, P.S.: Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27(5), 604–623 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kraus, J., Förster, M.: Efficient AMG on heterogeneous systems. In: Facing the Multicore - Challenge II. Lecture Notes in Computer Science, vol. 7174, pp. 133–146. Springer, Berlin (2012)Google Scholar
  27. 27.
    Krechel, A., Stüben, K.: Parallel algebraic multigrid based on subdomain blocking. Parallel Comput. 27(8), 1009–1031 (2001)zbMATHCrossRefGoogle Scholar
  28. 28.
    Tuminaro, R.S.: Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (CDROM). IEEE, New York (2000)Google Scholar
  29. 29.
    Vassilevski, P.S.: Multilevel Block Factorization Preconditioners. Springer, New York (2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • James Brannick
    • 1
  • Yao Chen
    • 2
  • Xiaozhe Hu
    • 1
  • Ludmil Zikatanov
    • 1
    Email author
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Microsoft CorporationMountain ViewUSA

Personalised recommendations