Advertisement

Robust Algebraic Multilevel Preconditioners for Anisotropic Problems

  • J. Kraus
  • M. Lymbery
  • S. MargenovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 45)

Abstract

We present an overview on the state of the art of robust AMLI preconditioners for anisotropic elliptic problems. The included theoretical results summarize the convergence analysis of both linear and nonlinear AMLI methods for finite element discretizations by conforming and nonconforming linear elements and by conforming quadratic elements. The initially proposed hierarchical basis approach leads to robust multilevel algorithms for linear but not for quadratic elements for which an alternative AMLI method based on additive Schur complement approximation (ASCA) has been developed by the authors just recently. The presented new numerical results are focused on cases beyond the limitations of the rigorous AMLI theory. They reveal the potential and prospects of the ASCA approach to enhance the robustness of the resulting AMLI methods especially in situations when the matrix-valued coefficient function is not resolved on the coarsest mesh in the multilevel hierarchy.

Keywords

Hetezogeneous anisotropic problems AMLI Robust Preconditioning 

Notes

Acknowledgements

This work has been supported by the Austrian Science Fund (grant P22989-N18), the Bulgarian NSF (grant DCVP 02/1), and FP7-REGPOT-2012-CT2012-316087-AComIn Grant.

References

  1. 1.
    Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C.B.S. inequality constant. Appl. Math. 49(1), 57–72 (2004)Google Scholar
  2. 2.
    Axelsson, O., Blaheta, R., Neytcheva, M.: Preconditioning of boundary value problems using elementwise Schur complements. SIAM J. Matrix Anal. Appl. 31(2), 767–789 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Axelsson, O., Margenov, S.: On multilevel preconditioners which are optimal with respect to both problem and discretization parameters. Comput. Methods Appl. Math. 3(1), 6–22 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Axelsson, O., Padiy, A.: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20(5), 1807–1830 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Axelsson, O.: Stabilization of algebraic multilevel iteration methods; Additive methods. Numer. Algorithm 21(1–4), 23–47 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods I. Numer. Math. 56(2–3), 157–177 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods II. SIAM J. Numer. Anal. 27(6), 1569–1590 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Axelsson, O., Vassilevski, P.: Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems. Numer. Linear Algebra Appl. 1(1), 75–101 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Blaheta, R., Margenov, S., Neytcheva, M.: Uniform estimate of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems. Numer. Linear Algebra Appl. 11(4), 309–326 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Blaheta, R., Margenov, S., Neytcheva, M.: Robust optimal multilevel preconditioners for non-conforming finite element systems. Numer. Linear Algebra Appl. 12(5–6), 495–514 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chan, T., Vanek, P.: Detection of strong coupling in algebraic multigrid solvers. Multigrid Methods VI, pp. 11–23. Springer, New York (2000)Google Scholar
  12. 12.
    Efendiev, Y., Galvis, J., Lazarov, R.D., Margenov, S., Ren, J.: Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Comput. Methods Appl. Math. 12(4), 1–22 (2012)Google Scholar
  13. 13.
    Georgiev, I., Lymbery, M., Margenov, S.: Analysis of the CBS constant for quadratic finite elements. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) Lecture Notes in Computer Science, vol. 6046, NMA 2010, pp. 412–419. Springer, New York (2011)Google Scholar
  14. 14.
    Georgiev, I., Kraus, J., Lymbery, M., Margenov, S.: On two-level splittings for quadratic FEM anisotropic elliptic problems. 5th Annual meeting of BGSIAM’10, pp. 35–40 (2011)Google Scholar
  15. 15.
    Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. Sect. B 49(6), 409–436 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kraus, J.: An algebraic preconditioning method for M-matrices: Linear versus non-linear multilevel iteration. Numer. Linear Algebra Appl. 9(8), 599–618 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kraus, J.: Algebraic multilevel preconditioning of finite element matrices using local Schur complements. Numer. Linear Algebra Appl. 13(1), 49–70 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kraus, J.: Additive Schur complement approximation and application to multilevel preconditioning. SIAM J. Sci. Comput. 34(6), A2872–A2895 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kraus, J., Lymbery, M., Margenov, S.: On the robustness of two-level preconditioners for quadratic fe orthotropic elliptic problems. LNCS Proc. (LSSC’11 Conference) 7116, 582–589 (2012)Google Scholar
  20. 20.
    Kraus, J., Lymbery, M., Margenov, S.: Robust multilevel methods for quadratic finite element anisotropic elliptic problems, to appear in Numer. Linear Algebra Appl.; Also available as RICAM-Report No. 2012–29 (2013)Google Scholar
  21. 21.
    Kraus, J., Margenov, S.: Multilevel methods for anisotropic elliptic problems. Lectures on Advanced Computational Methods in Mechanics, de Gruyter Radon Series. Comput. Appl. Math. 1, 47–88 (2007)Google Scholar
  22. 22.
    Kraus, J., Margenov, S., Synka, J.: On the multilevel preconditioning of Crouzeix-Raviart elliptic problems. Numer. Linear Algebra. Appl. 15(5), 395–416 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Maitre, J.F., Musy, S.: The contraction number of a class of two-level methods; An exact evaluation for some finite element subspaces and model problems. Lect. Note Math. 960, 535–544 (1982)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Margenov, S., Vassilevski, P.S.: Algebraic multilevel preconditioning of anisotropic elliptic problems. SIAM J. Sci. Comput. 15(5), 1026–1037 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Neytcheva, M.: On element-by-element Schur complement approximations. Linear Algebra Appl. 434(11), 2308–2324 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Notay, Y., Vassilevski, P.: Recursive Krylov-based multigrid cycles. Numer. Linear Algebra Appl. 15(5), 473–487 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Vassilevski, P.: Multilevel Block Factorization Preconditioners. Springer, New York (2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  2. 2.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations