Efficient Parallel Algorithms for Unsteady Incompressible Flows

  • Jean-Luc Guermond
  • Peter D. MinevEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 45)


The objective of this paper is to give an overview of recent developments on splitting schemes for solving the time-dependent incompressible Navier–Stokes equations and to discuss possible extensions to the variable density/viscosity case. A particular attention is given to algorithms that can be implemented efficiently on large parallel clusters.


Navier-Stokes Fractional Time-Stepping Projection Methods Direction Splitting Variable Density Variable Viscosity 



This material is based upon work supported by the National Science Foundation grants DMS-0713829, by the Air Force Office of Scientific Research, USAF, under grant/contract number FA9550-09-1-0424, and a discovery grant of the National Science and Engineering Research Council of Canada. This publication is also partially based on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).


  1. 1.
    Angot, P.: Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows. Math. Methods Appl. Sci. 22(16), 1395–1412 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Angot, P., Keating, J., Minev, P.: A direction splitting algorithm for incompressible flow in complex geometries. Comput. Methods Appl. Mech. Eng. 117, 111–120 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bramble, J., Zhang, X.: The analysis of multigrid methods. In: Handbook of Numerical Analysis, vol. VII, pp. 173–415. North-Holland, Amsterdam (2000)Google Scholar
  4. 4.
    Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math. Comp. 55(191), 1–22 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chorin, A.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Douglas, J., Jr.: Alternating direction methods for three space variables. Numer. Math. 4, 41–63 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guermond, J.-L.: Some practical implementations of projection methods for Navier-Stokes equations. Modél. Math. Anal. Num. 30, 637–667 (1996)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Guermond, J.-L., Minev, P.: A new class of massively parallel direction splitting schemes for the incompressible Navier-Stokes equations. Comp. Methods Appl. Mech. Eng. 200: 2083–2093 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guermond, J.-L., Minev, P.: Start-up flow in a three-dimensional lid-driven cavity by means of a massively parallel direction splitting algorithm. Int. J. Numer. Meth. Fluids. 68, 856–871 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guermond, J.-L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228(8), 2834–2846 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guermond, J., Shen, J.: Quelques résultats nouveaux sur les méthodes de projection. C. R. Acad. Sci. Paris Sér. I 333, 1111–1116 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Guermond, J., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comp. 73(248), 1719–1737 (electronic) (2004)Google Scholar
  14. 14.
    Guermond, J.-L., Quartapelle, L.: On stability and convergence of projection methods based on pressure Poisson equation. Int. J. Numer. Methods Fluids 26(9), 1039–1053 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guermond, J.-L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6054 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guermond, J.-L., Minev, P., Salgado, A.: Convergence analysis of a class of massively parallel direction splitting algorithms for the Navier-Stokes equations simple domains. Math. Comp. 81, 1951–1977 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97, 414–443 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Korobytsina, Z.L.: Fictitious domain method for linear parabolic equations (in Russian). Differ. Equ. 21(5), 854–862 (1985)Google Scholar
  20. 20.
    Kuttykozhaeva, S., Zhumagulov, B., Smagulov, S.: An unimprovable estimate of the convergence rate in the fictitious domain method for the Navier-Stokes equations. Dokl. Math. 67(3), 382–385 (2003)zbMATHGoogle Scholar
  21. 21.
    Orszag, S.A., Israeli, M., Deville, M.: Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75–111 (1986)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rannacher, R.: On Chorin’s projection method for the incompressible Navier-Stokes equations. In: Lecture Notes in Mathematics, Springer, vol. 1530 (1991)Google Scholar
  23. 23.
    Samarskii, A.: Regularization of difference schemes. USSR Comput. Math. Math. Phys. 7, 79–120 (1967)CrossRefGoogle Scholar
  24. 24.
    Samarskii, A., Vabishchevich, P.: Additive Schemes for Problems in Mathematical Physics. Nauka, Moskva (1999) (in Russian)Google Scholar
  25. 25.
    Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shen, J.: On error estimates of projection methods for the Navier-Stokes equations: second-order schemes. Math. Comp. 65(215), 1039–1065 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires ii. Arch. Ration. Mech. Anal. 33, 377–385 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Timmermans, L., Minev, P., Vosse, F.V.D.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22, 673–688 (1996)CrossRefzbMATHGoogle Scholar
  29. 29.
    Weinan, E., Liu, J.: Gauge method for viscous incompressible flows. Commun. Math. Sci. 1(2), 317–332 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsTexas A& M UniversityCollege StationUSA
  2. 2.CNRSParisFrance
  3. 3.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations