Skip to main content

Electrodes and Heaters in MOX-Based Gas Sensors

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 4960 Accesses

Abstract

Materials which can be used for fabricating electrodes and heaters in metal oxide chemiresistors and solid electrolyte-based gas sensors are the object of analysis in the present chapter. It is known that another crucial issue, beyond the sensing layer and the sensor design, is the choice of the metal used for making electrical contacts to the sensing layer. The heater is also an important part of the gas sensor because the majority of gas sensors, including conductometric MOX sensors, thermoelectric sensors, and pelistors, operate at high temperatures. The requirements for materials aimed at the fabrication of electrodes and heaters, their parameters, and their limitations are discussed. The chapter includes 8 figures, 2 tables, and 127 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaberg RJ, Tunold R, Odegard R (2000) On the electrochemistry of metal-YSZ single contacts. Solid State Ionics 136–137:707–712

    Article  Google Scholar 

  • Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16

    Article  CAS  Google Scholar 

  • Alberti G, Carbone A, Palombari R (2001) Solid state potentiometric sensor at medium temperatures (150–300 °C) for detecting oxidable gaseous species in air. Sens Actuators B 75:125–128

    Article  CAS  Google Scholar 

  • Alcock CB (1961) The gaseous oxides of the platinum metals. Platin Met Rev 5(4):134–139

    Google Scholar 

  • Amar IA, Lan R, Petit CTG, Tao S (2011) Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15:1845–1860

    Article  CAS  Google Scholar 

  • Aslam M, Gregory C, Hatfield JV (2004) Polyimide membrane for micro-heated gas sensor array. Sens Actuators B 103:153–157

    Article  CAS  Google Scholar 

  • Bai Z, Wang A, Xie C (2006) Laser grooving of Al2O3 plate by a pulsed Nd:YAG laser: characteristics and application to the manufacture of gas sensors array heater. Mater Sci Eng A 435–436:418–424

    Google Scholar 

  • Barbucci A, Bozzo R, Cerisola G, Costamagna P (2002) Characterisation of SOFC composite cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes. Electrochim Acta 47:2183–2188

    Article  CAS  Google Scholar 

  • Barsan N, Schweizer-Belberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304

    Article  CAS  Google Scholar 

  • Bender F, Kim C, Mlsna T, Vetelino JF (2001) Characterization of a WO3 thin film chlorine sensor. Sens Actuators B 77:281–286

    Article  CAS  Google Scholar 

  • Benkstein KD, Martinez CJ, Li G, Meier DC, Montgomery CB, Semancik S (2006) Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance. J Nanopart Res 8:809–822

    Article  Google Scholar 

  • Bertrand J, Koziej D, Barsan N, Viricelle JP, Pijolat C, Weimar U (2006) Influence of the nature of the electrode on the sensing performance of SnO2 sensors; impedance spectroscopy studies, In: Proceeding of European conference on solid state transducers, eurosensors XX, Goteborg, Sweden, 17–20 Sept., pp 100–101

    Google Scholar 

  • Bertrand J, Viricelle JP, Pijolat C, Haensch A, Koziej D, Barsan N, Weimar U (2007) Metal/SnO2 interface effects on CO sensing: operando studies. In: Proceedings of the 6th IEEE sensors conference, Atlanta, GA, 28–31 Oct, pp 492–495

    Google Scholar 

  • Bowker M, Bowker LJ, Bennett RA, Stone P, Ramirez-Cuesta A (2000) In consideration of precursor states, spillover and Boudart’s “collection zone” and of their role in catalytic processes. J Mol Cat A Chem 163:221–232

    Article  CAS  Google Scholar 

  • Brinzari V, Korotcenkov G, Schwank J, Boris Y (2002) Chemisorptional approach to kinetic analysis of SnO2:Pd-based thin film gas sensors (TFGS). J Optoelect Adv Mater (Romania) 4(1):147–150

    CAS  Google Scholar 

  • Bultel L, Vernoux P, Gaillard F, Roux C, Siebert E (2005) Electrochemical and catalytic properties of porous Pt-YSZ composites. Solid State Ionics 176:793–801

    Article  CAS  Google Scholar 

  • Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L (2001) Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol-gel thin film. Sens Actuators B 77:503–511

    Article  CAS  Google Scholar 

  • Chen L, Mehregany M (2007) Exploring silicon carbide for thermal infrared radiators. In: Proceedings of the 6th IEEE sensors conference, Atlanta, GA, USA, 28–31 Oct 2007, pp 620–623

    Google Scholar 

  • Chevallier L, Di Bartolomeo E, Grilli ML, Mainas M, White B, Wachsman ED, Traversa E (2008) Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode. Sens Actuators B 129:591–597

    Article  CAS  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G (2009) Electrical-based gas sensing. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York, NY, pp 47–107

    Chapter  Google Scholar 

  • Creemer JF, Briand D, Zandbergen HW, Vlist W, Boer CR, Rooij NF, Sarro PM (2008) Microhotplates with TiN heaters. Sens Actuators A 148:416–421

    Article  CAS  Google Scholar 

  • Dai CL (2007) A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique. Sens Actuators B 122:375–380

    Article  CAS  Google Scholar 

  • Di Bartolomeo E, Kaabbuathong N, D’Epifanio A, Grilli ML, Traversa E, Aono H, Sadaoka Y (2004) Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers. J Euro Ceram Soc 24(6):1187–1190

    Article  CAS  Google Scholar 

  • Durrani SMA (2006) The influence of electrode metals and its configuration on the response of tin oxide thin film CO sensor. Talanta 68(5):1732–1735

    Article  CAS  Google Scholar 

  • Dziedzic A, Golonka LJ, Licznerski BW, Hielscher G (1994) Heaters for gas sensors from thick conductive or resistive films. Sens Actuators B 19:535–539

    Article  CAS  Google Scholar 

  • Dziedzic A, Golonka LJ, Kozlowski J, Licznerski BW, Nitsch K (1997) Thick-film resistive temperature sensors. Meas Sci Technol 8:78–85

    Article  CAS  Google Scholar 

  • Elumalai P, Miura N (2005) Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature. Solid State Ionics 31–34:2517–2522

    Article  CAS  Google Scholar 

  • Esch H, Huyberechts G, Mertens R, Maes G, Manca J, DeCeuninck W, De Schepper L (2000) The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors. Sens Actuators B 65:190–192

    Article  CAS  Google Scholar 

  • Faglia G, Comini E, Sberveglieri G, Rella R, Siciliano P, Vasanelli L (1998) Square and collinear four probe array and Hall measurements on metal oxide thin film gas sensors. Sens Actuators B 53:69–75

    Article  CAS  Google Scholar 

  • Fergus JW (2007a) Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases. Sens Actuators B 122:683–693

    Article  CAS  Google Scholar 

  • Fergus JW (2007b) Materials for high temperature electrochemical NO x gas sensors. Sens Actuators B 121:652–663

    Article  CAS  Google Scholar 

  • Fergus JW (2008) A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors. Sens Actuators B 134:1034–1041

    Article  CAS  Google Scholar 

  • Fleischer M, Hollbauer L, Meixner H (1994) Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases. Sens Actuators B 18–19:119–124

    Article  Google Scholar 

  • Fukui K, Nakane M (1993) Effects of tin oxide semiconductor-electrode interface on gas sensitivity characteristics. Sens Actuators B 13–14:589–590

    Article  Google Scholar 

  • Furjes P, Zs V, Adam M, Barsony I, Morrissey A, Cs D (2002) Materials and processing for realization of micro-hotplates operated at elevated temperature. J Micromech Microeng 12:425–429

    Article  CAS  Google Scholar 

  • Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L (2005) Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal Sci 21(12):1383–1393

    Article  CAS  Google Scholar 

  • Gourari H, Lumbreras M, Van Landschoot R, Schoonman J (1999) Electrode nature effects on stannic oxide type layers prepared by electro-static spray deposition. Sens Actuators B 58:365–369

    Article  CAS  Google Scholar 

  • Guo W, Liu T, Zhang H, Sun R, Chen Y, Zeng W, Wang Z (2012) Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sens Actuators B 166–167:492–499

    Article  CAS  Google Scholar 

  • Gurlo A, Bârsan N, Weimar U (2004) Gas sensors based on semiconducting metal oxides. In: Fierro JLG (ed) Metal oxides: chemistry and applications. Dekker, New York, NY

    Google Scholar 

  • Hibino T, Kuwahara Y, Wang S, Kakimoto S, Sano M (1998a) Nonideal electromotive force of zirconia sensors for unsaturated hydrocarbon gases. Electrochem Soc Lett 1(4):197–199

    Article  CAS  Google Scholar 

  • Hibino T, Wang S, Kakimoto S, Sano M (1998b) Detection of propylene under oxidizing conditions using zirconia-based potentiometric sensor. Sens Actuators B 50:149–155

    Article  CAS  Google Scholar 

  • Hibino T, Kakimoto S, Sano M (1999) Non-Nernstian behavior at modified Au electrodes for hydrocarbon gas sensing. J Electrochem Soc 146:3361–3366

    Article  CAS  Google Scholar 

  • Hoefer U, Kuhner G, Schweizer W, Sulz G, Steiner K (1994) CO and CO2 thin film SnO2 gas sensors on Si substrates. Sens Actuators B 22:115–119

    Article  CAS  Google Scholar 

  • Hwang W-J, Shin K-S, Roh J-H, Lee D-S, S.-H S-H (2011) Development of micro-heaters with optimized temperature compensation design for gas sensors. Sensors 11:2580–2591

    Article  CAS  Google Scholar 

  • Ihokura K, Watson J (1994) The stannic oxide gas sensor—principles and applications. CRC, Boca Raton, FL, pp 79–85

    Google Scholar 

  • Jaccoud A, Foti G, Wuthrich R, Jotterand H, Comninellis C (2007) Pt/YSZ microstructure and electrochemistry. Top Catal 44(3):409–417

    Article  CAS  Google Scholar 

  • Jain U, Hanker AM, Stoneham M, Williams DE (1990) Effect of electrode geometry on sensor response. Sens Actuators B 2:111–114

    Article  Google Scholar 

  • Jelenkovic EV, Tong KY, Cheung WY, Wong SP (2003) Degradation of RuO2 thin films in hydrogen atmosphere at temperatures between 150 and 250 ◦C. J Microelectron Reliab 43:49–55

    Article  CAS  Google Scholar 

  • Kimura T, Goto T (2005) Ir-YSZ nano-composite electrodes for oxygen sensors. Surf Coat Technol 198:36–39

    Article  CAS  Google Scholar 

  • Kohl D (1990) The role of noble metals in the chemistry of solid-state gas sensors. Sens Actuators B 1:158–165

    Article  CAS  Google Scholar 

  • Korotcenkov G (2007a) Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B 139:1–23

    Article  CAS  Google Scholar 

  • Korotcenkov G (2007b) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678

    Article  CAS  Google Scholar 

  • Korotchenkov GS, Dmitriev SV, Brynzari VI (1999) Processes development for low cost and low power consuming SnO2 thin film gas sensors (TFGS). Sens Actuators B 54:202–209

    Article  CAS  Google Scholar 

  • Lalauze R, Bui N, Pijolat C (1984) Interpretation of the electrical properties of SnO2 gas sensors after treatments with sulphur dioxide. Sens Actuators 6:119–125

    Article  CAS  Google Scholar 

  • Li X, Kale GM (2005a) Novel nanosized ITO electrode for mixed potential gas sensors. Electrochem Solid State Lett 8:27–30

    Article  CAS  Google Scholar 

  • Li X, Kale GM (2005b) Planar mixed-potential CO sensor utilizing novel BLIO and ITO interface. Electrochem Solid State Lett 9:12–15

    Article  CAS  Google Scholar 

  • Li X, Kale GM (2006) Influence of thickness of ITO sensing electrode film on sensing performance of planar mixed potential CO sensor. Sens Actuators B 120:150–155

    Article  CAS  Google Scholar 

  • Li X, Kale GM (2007) Influence of sensing electrode and electrolyte on performance of potentiometric mixed potential gas sensors. Sens Actuators B 123:254–261

    Article  CAS  Google Scholar 

  • Lin H-M, Tzeng S-J, Hsiau P-J, Tsai W-L (1998) Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostructure Mater 10(3):465–477

    Article  CAS  Google Scholar 

  • Lopez-Gandara C, Ramos FM, Cirera A (2009) YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J Sensors 2009:258489

    Article  CAS  Google Scholar 

  • Lu G, Miura N, Yamazoe N (1996a) High temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens Actuators B 35:130–135

    Article  CAS  Google Scholar 

  • Lu G, Miura N, Yamazoe N (1996b) Mixed potential hydrogen sensor combining oxide ion conductor with oxide electrode. J Electrochem Soc 143:L154–L155

    Article  CAS  Google Scholar 

  • Mailly F, Giani A, Bonnot R, Temple-Boyer P, Pascal-Delannoy F, Foucaran A, Boyer A (2001) Anemometer with hot platinum thin film. Sens Actuators A 94:32–38

    Article  CAS  Google Scholar 

  • Manzoli A, Steffens C, Paschoalin RT, Correa AA, Alves WF, Leite FL, Herrmann PSP (2011) Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness. Sensors 11:6425–6434

    Article  CAS  Google Scholar 

  • Martin LP, Glass RS (2005) Hydrogen sensor based on YSZ electrolyte and tin doped indium oxide electrode. J Electrochem Soc 152:H43–H47

    Article  CAS  Google Scholar 

  • Martin LP, Pham A-Q, Glass RS (2004) Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics 175:527–530

    Article  CAS  Google Scholar 

  • McAleer JF, Moseley PT, Norris JOW, Williams DE, Tofield BC (1988) Tin dioxide gas sensors. Part 2. The role of surface additives. J Chem Soc, Faraday Trans 1 84(2):441–457

    Article  CAS  Google Scholar 

  • Meixner H, Lampe U (1996) Metal oxide sensors. Sens Actuators B 33:198–202

    Article  CAS  Google Scholar 

  • Michel H-J, Michel H-J, Leiste H, Halbritter J (1995) Structural and electrical characterization of PVD-deposited SnO2 films for gas-sensor application. Sens Actuators B 24–25:568–572

    Article  Google Scholar 

  • Miura N, Yamazoe N (1998) High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode. Sens Actuators B 52:169–178

    Article  CAS  Google Scholar 

  • Miura N, Lu G, Yamazoe N, Kurosawa H, Hasei M (1996) Mixed potential type NO x sensor based on stabilized zirconia and oxide electrode. J Electrochem Soc 143:L33–L35

    Article  CAS  Google Scholar 

  • Miura N, Lu G, Yamazoe N (2000) Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ionics 136–137:533–542

    Article  Google Scholar 

  • Miura N, Wang J, Elumalai P, Ueda T, Terada D, Hasei M (2007) Improving NO2 sensitivity by adding WO3 during processing of NiO sensing electrode of mixed-potential-type zirconia-based sensor. J Electrochem Soc 154:J246–J250

    Article  CAS  Google Scholar 

  • Miura N, Elumalai P, Plashnitsa VV, Ueda T, Wama R, Utiyama M (2009) Solid-state electrochemical gas sensing. In: Comini E, Faglia G, Sbervegliery G (eds) Solid state gas sensing. Springer, New York, NY, pp 181–208

    Google Scholar 

  • Mo YW, Okawa Y, Tajima M, Nakai T, Yoshiike N, Katukawa K (2001) Micro-machined gas sensor array based on metal film micro-heater. Sens Actuators B 79:175–181

    Article  CAS  Google Scholar 

  • Montmeat P, Lalauze R, Viricelle J-P, Tornier G, Pijolat C (2002) Influence of SnO2 thick film thickness on the detection properties. In: Proceedings of Eurosensors XVI, European conference on solid-state transducers, Prague, Czech Republic, 15–18 Sept, pp 1116–1119

    Google Scholar 

  • Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11:283–287

    Article  CAS  Google Scholar 

  • Moseley PT, Tofield BC (eds) (1987) Solid state gas sensors. Adam Hilger, Bristol

    Google Scholar 

  • Mukundan R, Brosha E, Brown D, Garzon F (1999) Ceria-electrolyte-based mixed potential sensors for the detection of hydrocarbons and carbon monoxide. Electrochem Solid State Lett 2(8):412–414

    Article  CAS  Google Scholar 

  • Mukundan R, Brosha EL, Brown DR, Garzon FG (2000) A mixed-potential sensor based on a Ce0.8Gd0.2O1.9 electrolyte and platinum and gold electrodes. J Electrochem Soc 147:1583–1588

    Article  CAS  Google Scholar 

  • Nakatou M, Miura N (2005) Detection of combustible hydrogen-containing gases by using impedancemetric zirconia-based water-vapor sensor. Solid State Ionics 176:2511–2515

    Article  CAS  Google Scholar 

  • Nielsen J, Jacobsen T (2007) Three-phase boundary dynamics at Pt/YSZ microelectrodes. Solid State Ionics 178:1001–1009

    Article  CAS  Google Scholar 

  • O’Hayre R, Barnett D, Prinz FB (2005) The triple phase boundary: a mathematical model and experimental investigations for fuel cells. J Electrochem Soc 152:439–444

    Article  CAS  Google Scholar 

  • Panchapakesan B, DeVoe DL, Widmaier MR, Cavicchi R, Semancik S (2001) Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12:336–349

    Article  CAS  Google Scholar 

  • Park JH, Kim KH (1999) Improvement of long-term stability in SnO2-based gas sensor for monitoring offensive odor. Sens Actuators B 56:50–58

    Article  CAS  Google Scholar 

  • Pasierb P, Rekas M (2009) Solid-state potentiometric gas sensors—current status and future trends. J Solid State Electrochem 13:3–25

    Article  CAS  Google Scholar 

  • Pijolat C (1986) Etudes des propriétés physico-chimiques et des propriétés électriques du dioxyde d’étain en fonction de l’atmosphère gazeuse environnante. Application à la detection sélective des gaz. PhD Thesis, De L’Institut National Polytechnique de Grenoble

    Google Scholar 

  • Plashnitsa VV, Ueda T, Miura N (2006) Improvement of NO2 sensing performances by an additional second component to the nano-structured NiO sensing electrode of YSZ-based mixed-potential-type sensor. Int J Appl Ceram Technol 3:127–133

    Article  CAS  Google Scholar 

  • Plashnitsa VV, Ueda T, Miura N (2007) Improvement of NO2 a sensing performances by an additional second component to the nano-structured NiO sensing electrode of a YSZ-based mixed-potential-type sensor. Int J Appl Ceram Technol 3(2):27–133

    Google Scholar 

  • Plashnitsa VV, Ueda T, Elumalai P, Miura N (2008a) NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode. Sens Actuators B 130:231–239

    Article  CAS  Google Scholar 

  • Plashnitsa VV, Ueda T, Elumalai P, Miura N (2008b) Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO-Au sensing electrode. Ionics 14(1):15–25

    Article  CAS  Google Scholar 

  • Plashnitsa VV, Elumalai P, Miura N (2008c) Sensitive and selective zirconia-based NO2 sensor using gold nanoparticle coatings as sensing electrodes. J Electrochem Soc 155:301–306

    Article  CAS  Google Scholar 

  • Ponomareva VG, Lavrova GV, Hairetdinov EF (1997) Hydrogen sensor based on antimonium pentoxide-phosphoric acid solid electrolyte. Sens Actuators B 40:95–98

    Article  CAS  Google Scholar 

  • Qi Q, Zhang T, Liu L, Zheng X (2009) Synthesis and toluene sensing properties of SnO2 nanofibers. Sens Actuators B 137:471–475

    Article  CAS  Google Scholar 

  • Sakthivel M, Weppner W (2008) A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect. Int J Hydrogen Energy 33:905–911

    Article  CAS  Google Scholar 

  • Saukko S, Lantto V (2003) Influence of electrode material on properties of SnO2-based gas sensor. Thin Solid Films 436:137–140

    Article  CAS  Google Scholar 

  • Schweizer-Berberich M, Barsan N, Weimar U, Morante JR, Gopel W (1997) Electrode effects on gas sensing properties of nanocrystalline SnO2 gas sensors. In: Proceedings of the 11th European conference on solid state transducers, Eurosensors XI, Warsaw, Poland, 21–24 Sept, pp 1377–1380

    Google Scholar 

  • Shaalan NM, Yamazaki T, Kikuta T (2011) Effect of micro-electrode geometry on NO2 gas-sensing characteristics of one-dimensional tin dioxide nanostructure microsensors. Sens Actuators B 156:784–790

    Article  CAS  Google Scholar 

  • Shim Y-S, Moon HG, Kim DH, Jang HW, Kang C-Y, Yoon YS, Yoon S-J (2011) Transparent conducting oxide electrodes for novel metal oxide gas sensors. Sens Actuators B 160:357–363

    Article  CAS  Google Scholar 

  • Sozza A, Dua C, Kerlain A, Brylinski C, Zanoni E (2004) Long-term reliability of Ti–Pt–Au metallization system for Schottky contact and first-level metallization on SiC MESFET. Microelectron Reliab 44:1109–1113

    Article  CAS  Google Scholar 

  • Sridhar S, Stancovski V, Pal UB (1997) Effect of oxygen containing species on the impedance of the Pt/YSZ interface. Solid State Ionics 100:17–22

    Article  CAS  Google Scholar 

  • Tamaki J, Miyaji A, Makinodan J, Ogura S, Konishi S (2005) Effect of micro-gap electrode on detection of dilute NO2 using WO3 thin film microsensors. Sens Actuators B 108:202–206

    Article  CAS  Google Scholar 

  • Thiemann S, Hartung R, Wulff H, Klimke J, Mobius H-H, Guth U, Schonauer U (1996) Modified Au/YSZ electrodes—preparation, characterization and electrode behaviour at higher temperatures. Solid State Ionics 86–88:873–876

    Article  Google Scholar 

  • Torres-Huerta AM, Vargas-Garcia JR, Dominguez-Crespo A (2007) Preparation and characterization of IrO2-YSZ nanocomposite electrodes by MOCVD. Solid State Ionics 178:1608–1616

    Article  CAS  Google Scholar 

  • Vilanova X, Llobet E, Brezmes J, Calderer J, Correig X (1998) Numerical simulation of the electrode geometry and position effects on semiconductor gas sensor response. Sens Actuators B 48:425–431

    Article  CAS  Google Scholar 

  • Vincenzi D, Butturi MA, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Pignatel GU, Vasiliev AA, Pisliakov AV (2001) Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Sens Actuators B 77:95–99

    Article  CAS  Google Scholar 

  • Vogel A, Baier G, Schule V (1993) Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials. Sens Actuators B 15:147–150

    Article  CAS  Google Scholar 

  • Wang J, Chen G, Wang M, Chatrathi MP (2004) Carbon nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst 129(6):512–515

    Article  CAS  Google Scholar 

  • Wang J, Elumalai P, Terada D, Hasei M, Miura N (2006) Mixed-potential-type zirconia-based NO x sensor using Rh-loaded NiO sensing electrode operating at high temperatures. Solid State Ionics 177:2305–2311

    Article  CAS  Google Scholar 

  • Wang X, Huang H, Holme T, Tian X, Prinz FB (2008) Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. J Power Sources 175(1):75–81

    Article  CAS  Google Scholar 

  • Westphal D, Jakobs S, Guth U (2001) Gold-composite electrodes for hydrocarbon sensors based on YSZ solid electrolyte. Ionics 7:182–186

    Article  CAS  Google Scholar 

  • Williams DE (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B 57:1–16

    Article  CAS  Google Scholar 

  • Wu N, Zhao M, Zheng JG, Jiang C, Myers B, Le S, Chyu M, Mao SX (2005) Porous CuO-ZnO nanocomposite for sensing electrode of high-temperature CO solid-state electrochemical sensor. Nanotechnology 16(12):2878–2881

    Article  CAS  Google Scholar 

  • Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sens Actuators 4:283–289

    Article  CAS  Google Scholar 

  • Ylinampa A, Lantto V, Leppavuori S (1993) Some differences between Au and Pt electrodes in SnO2 thick-film gas sensors. Sens Actuators B 13–14:602–604

    Article  Google Scholar 

  • Yong YK, Patel M, Vig J, Ballato A (2009) Effects of electromagnetic radiation on the Q of quartz resonators. IEEE Trans Ultrason Ferroelectr Freq Control 56:353–360

    Article  Google Scholar 

  • Yoon JW, Grilli ML, Bartolomeo ED, Polini R, Traversa E (2001) The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes. Sens Actuators B 76:483–488

    Article  CAS  Google Scholar 

  • Yoon SP, Nam SW, Kim SG, Hong SA, Hyun SH (2003) Characteristics of cathodic polarization at Pt/YSZ interface without the effect of electrode microstructure. J Power Sources 115:27–34

    Article  CAS  Google Scholar 

  • Yoon SP, Nam SW, Han J, Lim TH, Hong SA, Hyun SH (2004) Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells. Solid State Ionics 166:1–11

    Article  CAS  Google Scholar 

  • Zhuiykov S (2007) Electrochemistry of zirconia gas sensors. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Zhuiykov S, Miura N (2005) Solid-state electrochemical gas sensors for emission control. In: Sorrell CC, Sugihara S, Nowotny J (eds) Materials for energy conversion devices. Woodhead Publishing, Cambridge, pp 303–335, Ch. 12

    Chapter  Google Scholar 

  • Zhuiykov S, Miura N (2007) Development of zirconia-based potentiometric NOx sensors for automative and energy industries in the early 21stt century: what are the prospects for sensors? Sens Actuators B 121:639–651

    Article  CAS  Google Scholar 

  • Zosel J, Westphal D, Jakobs S, Müller R, Guth Y (2002) Au–oxide composites as HC-sensitive electrode material for mixed potential gas sensors. Solid State Ionics 152–153:525–529

    Article  Google Scholar 

  • Zosel J, Müller R, Vashook V, Guth U (2004a) Response behavior of perovskites and Au/oxide composites as HC-electrodes in different combustibles. Solid State Ionics 175:531–533

    Article  CAS  Google Scholar 

  • Zosel J, Ahlborn K, Müller R, Westphal D, Vashook V, Gutha U (2004b) Selectivity of HC-sensitive electrode materials for mixed potential gas sensors. Solid State Ionics 169:115–119

    Article  CAS  Google Scholar 

  • Zosel J, Schiffel G, Gerlach F, Ahlborn K, Sasum U, Vashook V, Guth U (2006) Electrode materials for potentiometric hydrogen sensors. Solid State Ionics 177:2301–2304

    Article  CAS  Google Scholar 

  • Zosel J, Tuchtenhagen D, Ahlborn K, Gith U (2008) Mixed potential gas sensor with short response time. Sens Actuators B 130:326–329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Electrodes and Heaters in MOX-Based Gas Sensors. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_9

Download citation

Publish with us

Policies and ethics