Electrodes and Heaters in MOX-Based Gas Sensors

  • Ghenadii Korotcenkov
Part of the Integrated Analytical Systems book series (ANASYS)


Materials which can be used for fabricating electrodes and heaters in metal oxide chemiresistors and solid electrolyte-based gas sensors are the object of analysis in the present chapter. It is known that another crucial issue, beyond the sensing layer and the sensor design, is the choice of the metal used for making electrical contacts to the sensing layer. The heater is also an important part of the gas sensor because the majority of gas sensors, including conductometric MOX sensors, thermoelectric sensors, and pelistors, operate at high temperatures. The requirements for materials aimed at the fabrication of electrodes and heaters, their parameters, and their limitations are discussed. The chapter includes 8 figures, 2 tables, and 127 references.


Electrode Material Triple Phase Boundary Polysilicon Layer Single Metal Oxide Conductive Metal Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaberg RJ, Tunold R, Odegard R (2000) On the electrochemistry of metal-YSZ single contacts. Solid State Ionics 136–137:707–712CrossRefGoogle Scholar
  2. Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRefGoogle Scholar
  3. Alberti G, Carbone A, Palombari R (2001) Solid state potentiometric sensor at medium temperatures (150–300 °C) for detecting oxidable gaseous species in air. Sens Actuators B 75:125–128CrossRefGoogle Scholar
  4. Alcock CB (1961) The gaseous oxides of the platinum metals. Platin Met Rev 5(4):134–139Google Scholar
  5. Amar IA, Lan R, Petit CTG, Tao S (2011) Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15:1845–1860CrossRefGoogle Scholar
  6. Aslam M, Gregory C, Hatfield JV (2004) Polyimide membrane for micro-heated gas sensor array. Sens Actuators B 103:153–157CrossRefGoogle Scholar
  7. Bai Z, Wang A, Xie C (2006) Laser grooving of Al2O3 plate by a pulsed Nd:YAG laser: characteristics and application to the manufacture of gas sensors array heater. Mater Sci Eng A 435–436:418–424Google Scholar
  8. Barbucci A, Bozzo R, Cerisola G, Costamagna P (2002) Characterisation of SOFC composite cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes. Electrochim Acta 47:2183–2188CrossRefGoogle Scholar
  9. Barsan N, Schweizer-Belberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304CrossRefGoogle Scholar
  10. Bender F, Kim C, Mlsna T, Vetelino JF (2001) Characterization of a WO3 thin film chlorine sensor. Sens Actuators B 77:281–286CrossRefGoogle Scholar
  11. Benkstein KD, Martinez CJ, Li G, Meier DC, Montgomery CB, Semancik S (2006) Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance. J Nanopart Res 8:809–822CrossRefGoogle Scholar
  12. Bertrand J, Koziej D, Barsan N, Viricelle JP, Pijolat C, Weimar U (2006) Influence of the nature of the electrode on the sensing performance of SnO2 sensors; impedance spectroscopy studies, In: Proceeding of European conference on solid state transducers, eurosensors XX, Goteborg, Sweden, 17–20 Sept., pp 100–101Google Scholar
  13. Bertrand J, Viricelle JP, Pijolat C, Haensch A, Koziej D, Barsan N, Weimar U (2007) Metal/SnO2 interface effects on CO sensing: operando studies. In: Proceedings of the 6th IEEE sensors conference, Atlanta, GA, 28–31 Oct, pp 492–495Google Scholar
  14. Bowker M, Bowker LJ, Bennett RA, Stone P, Ramirez-Cuesta A (2000) In consideration of precursor states, spillover and Boudart’s “collection zone” and of their role in catalytic processes. J Mol Cat A Chem 163:221–232CrossRefGoogle Scholar
  15. Brinzari V, Korotcenkov G, Schwank J, Boris Y (2002) Chemisorptional approach to kinetic analysis of SnO2:Pd-based thin film gas sensors (TFGS). J Optoelect Adv Mater (Romania) 4(1):147–150Google Scholar
  16. Bultel L, Vernoux P, Gaillard F, Roux C, Siebert E (2005) Electrochemical and catalytic properties of porous Pt-YSZ composites. Solid State Ionics 176:793–801CrossRefGoogle Scholar
  17. Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L (2001) Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol-gel thin film. Sens Actuators B 77:503–511CrossRefGoogle Scholar
  18. Chen L, Mehregany M (2007) Exploring silicon carbide for thermal infrared radiators. In: Proceedings of the 6th IEEE sensors conference, Atlanta, GA, USA, 28–31 Oct 2007, pp 620–623Google Scholar
  19. Chevallier L, Di Bartolomeo E, Grilli ML, Mainas M, White B, Wachsman ED, Traversa E (2008) Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode. Sens Actuators B 129:591–597CrossRefGoogle Scholar
  20. Comini E, Faglia G, Sberveglieri G (2009) Electrical-based gas sensing. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York, NY, pp 47–107CrossRefGoogle Scholar
  21. Creemer JF, Briand D, Zandbergen HW, Vlist W, Boer CR, Rooij NF, Sarro PM (2008) Microhotplates with TiN heaters. Sens Actuators A 148:416–421CrossRefGoogle Scholar
  22. Dai CL (2007) A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique. Sens Actuators B 122:375–380CrossRefGoogle Scholar
  23. Di Bartolomeo E, Kaabbuathong N, D’Epifanio A, Grilli ML, Traversa E, Aono H, Sadaoka Y (2004) Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers. J Euro Ceram Soc 24(6):1187–1190CrossRefGoogle Scholar
  24. Durrani SMA (2006) The influence of electrode metals and its configuration on the response of tin oxide thin film CO sensor. Talanta 68(5):1732–1735CrossRefGoogle Scholar
  25. Dziedzic A, Golonka LJ, Licznerski BW, Hielscher G (1994) Heaters for gas sensors from thick conductive or resistive films. Sens Actuators B 19:535–539CrossRefGoogle Scholar
  26. Dziedzic A, Golonka LJ, Kozlowski J, Licznerski BW, Nitsch K (1997) Thick-film resistive temperature sensors. Meas Sci Technol 8:78–85CrossRefGoogle Scholar
  27. Elumalai P, Miura N (2005) Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature. Solid State Ionics 31–34:2517–2522CrossRefGoogle Scholar
  28. Esch H, Huyberechts G, Mertens R, Maes G, Manca J, DeCeuninck W, De Schepper L (2000) The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors. Sens Actuators B 65:190–192CrossRefGoogle Scholar
  29. Faglia G, Comini E, Sberveglieri G, Rella R, Siciliano P, Vasanelli L (1998) Square and collinear four probe array and Hall measurements on metal oxide thin film gas sensors. Sens Actuators B 53:69–75CrossRefGoogle Scholar
  30. Fergus JW (2007a) Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases. Sens Actuators B 122:683–693CrossRefGoogle Scholar
  31. Fergus JW (2007b) Materials for high temperature electrochemical NOx gas sensors. Sens Actuators B 121:652–663CrossRefGoogle Scholar
  32. Fergus JW (2008) A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors. Sens Actuators B 134:1034–1041CrossRefGoogle Scholar
  33. Fleischer M, Hollbauer L, Meixner H (1994) Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases. Sens Actuators B 18–19:119–124CrossRefGoogle Scholar
  34. Fukui K, Nakane M (1993) Effects of tin oxide semiconductor-electrode interface on gas sensitivity characteristics. Sens Actuators B 13–14:589–590CrossRefGoogle Scholar
  35. Furjes P, Zs V, Adam M, Barsony I, Morrissey A, Cs D (2002) Materials and processing for realization of micro-hotplates operated at elevated temperature. J Micromech Microeng 12:425–429CrossRefGoogle Scholar
  36. Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L (2005) Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal Sci 21(12):1383–1393CrossRefGoogle Scholar
  37. Gourari H, Lumbreras M, Van Landschoot R, Schoonman J (1999) Electrode nature effects on stannic oxide type layers prepared by electro-static spray deposition. Sens Actuators B 58:365–369CrossRefGoogle Scholar
  38. Guo W, Liu T, Zhang H, Sun R, Chen Y, Zeng W, Wang Z (2012) Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sens Actuators B 166–167:492–499CrossRefGoogle Scholar
  39. Gurlo A, Bârsan N, Weimar U (2004) Gas sensors based on semiconducting metal oxides. In: Fierro JLG (ed) Metal oxides: chemistry and applications. Dekker, New York, NYGoogle Scholar
  40. Hibino T, Kuwahara Y, Wang S, Kakimoto S, Sano M (1998a) Nonideal electromotive force of zirconia sensors for unsaturated hydrocarbon gases. Electrochem Soc Lett 1(4):197–199CrossRefGoogle Scholar
  41. Hibino T, Wang S, Kakimoto S, Sano M (1998b) Detection of propylene under oxidizing conditions using zirconia-based potentiometric sensor. Sens Actuators B 50:149–155CrossRefGoogle Scholar
  42. Hibino T, Kakimoto S, Sano M (1999) Non-Nernstian behavior at modified Au electrodes for hydrocarbon gas sensing. J Electrochem Soc 146:3361–3366CrossRefGoogle Scholar
  43. Hoefer U, Kuhner G, Schweizer W, Sulz G, Steiner K (1994) CO and CO2 thin film SnO2 gas sensors on Si substrates. Sens Actuators B 22:115–119CrossRefGoogle Scholar
  44. Hwang W-J, Shin K-S, Roh J-H, Lee D-S, S.-H S-H (2011) Development of micro-heaters with optimized temperature compensation design for gas sensors. Sensors 11:2580–2591CrossRefGoogle Scholar
  45. Ihokura K, Watson J (1994) The stannic oxide gas sensor—principles and applications. CRC, Boca Raton, FL, pp 79–85Google Scholar
  46. Jaccoud A, Foti G, Wuthrich R, Jotterand H, Comninellis C (2007) Pt/YSZ microstructure and electrochemistry. Top Catal 44(3):409–417CrossRefGoogle Scholar
  47. Jain U, Hanker AM, Stoneham M, Williams DE (1990) Effect of electrode geometry on sensor response. Sens Actuators B 2:111–114CrossRefGoogle Scholar
  48. Jelenkovic EV, Tong KY, Cheung WY, Wong SP (2003) Degradation of RuO2 thin films in hydrogen atmosphere at temperatures between 150 and 250 ◦C. J Microelectron Reliab 43:49–55CrossRefGoogle Scholar
  49. Kimura T, Goto T (2005) Ir-YSZ nano-composite electrodes for oxygen sensors. Surf Coat Technol 198:36–39CrossRefGoogle Scholar
  50. Kohl D (1990) The role of noble metals in the chemistry of solid-state gas sensors. Sens Actuators B 1:158–165CrossRefGoogle Scholar
  51. Korotcenkov G (2007a) Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B 139:1–23CrossRefGoogle Scholar
  52. Korotcenkov G (2007b) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678CrossRefGoogle Scholar
  53. Korotchenkov GS, Dmitriev SV, Brynzari VI (1999) Processes development for low cost and low power consuming SnO2 thin film gas sensors (TFGS). Sens Actuators B 54:202–209CrossRefGoogle Scholar
  54. Lalauze R, Bui N, Pijolat C (1984) Interpretation of the electrical properties of SnO2 gas sensors after treatments with sulphur dioxide. Sens Actuators 6:119–125CrossRefGoogle Scholar
  55. Li X, Kale GM (2005a) Novel nanosized ITO electrode for mixed potential gas sensors. Electrochem Solid State Lett 8:27–30CrossRefGoogle Scholar
  56. Li X, Kale GM (2005b) Planar mixed-potential CO sensor utilizing novel BLIO and ITO interface. Electrochem Solid State Lett 9:12–15CrossRefGoogle Scholar
  57. Li X, Kale GM (2006) Influence of thickness of ITO sensing electrode film on sensing performance of planar mixed potential CO sensor. Sens Actuators B 120:150–155CrossRefGoogle Scholar
  58. Li X, Kale GM (2007) Influence of sensing electrode and electrolyte on performance of potentiometric mixed potential gas sensors. Sens Actuators B 123:254–261CrossRefGoogle Scholar
  59. Lin H-M, Tzeng S-J, Hsiau P-J, Tsai W-L (1998) Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostructure Mater 10(3):465–477CrossRefGoogle Scholar
  60. Lopez-Gandara C, Ramos FM, Cirera A (2009) YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J Sensors 2009:258489CrossRefGoogle Scholar
  61. Lu G, Miura N, Yamazoe N (1996a) High temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens Actuators B 35:130–135CrossRefGoogle Scholar
  62. Lu G, Miura N, Yamazoe N (1996b) Mixed potential hydrogen sensor combining oxide ion conductor with oxide electrode. J Electrochem Soc 143:L154–L155CrossRefGoogle Scholar
  63. Mailly F, Giani A, Bonnot R, Temple-Boyer P, Pascal-Delannoy F, Foucaran A, Boyer A (2001) Anemometer with hot platinum thin film. Sens Actuators A 94:32–38CrossRefGoogle Scholar
  64. Manzoli A, Steffens C, Paschoalin RT, Correa AA, Alves WF, Leite FL, Herrmann PSP (2011) Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness. Sensors 11:6425–6434CrossRefGoogle Scholar
  65. Martin LP, Glass RS (2005) Hydrogen sensor based on YSZ electrolyte and tin doped indium oxide electrode. J Electrochem Soc 152:H43–H47CrossRefGoogle Scholar
  66. Martin LP, Pham A-Q, Glass RS (2004) Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics 175:527–530CrossRefGoogle Scholar
  67. McAleer JF, Moseley PT, Norris JOW, Williams DE, Tofield BC (1988) Tin dioxide gas sensors. Part 2. The role of surface additives. J Chem Soc, Faraday Trans 1 84(2):441–457CrossRefGoogle Scholar
  68. Meixner H, Lampe U (1996) Metal oxide sensors. Sens Actuators B 33:198–202CrossRefGoogle Scholar
  69. Michel H-J, Michel H-J, Leiste H, Halbritter J (1995) Structural and electrical characterization of PVD-deposited SnO2 films for gas-sensor application. Sens Actuators B 24–25:568–572CrossRefGoogle Scholar
  70. Miura N, Yamazoe N (1998) High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode. Sens Actuators B 52:169–178CrossRefGoogle Scholar
  71. Miura N, Lu G, Yamazoe N, Kurosawa H, Hasei M (1996) Mixed potential type NOx sensor based on stabilized zirconia and oxide electrode. J Electrochem Soc 143:L33–L35CrossRefGoogle Scholar
  72. Miura N, Lu G, Yamazoe N (2000) Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ionics 136–137:533–542CrossRefGoogle Scholar
  73. Miura N, Wang J, Elumalai P, Ueda T, Terada D, Hasei M (2007) Improving NO2 sensitivity by adding WO3 during processing of NiO sensing electrode of mixed-potential-type zirconia-based sensor. J Electrochem Soc 154:J246–J250CrossRefGoogle Scholar
  74. Miura N, Elumalai P, Plashnitsa VV, Ueda T, Wama R, Utiyama M (2009) Solid-state electrochemical gas sensing. In: Comini E, Faglia G, Sbervegliery G (eds) Solid state gas sensing. Springer, New York, NY, pp 181–208Google Scholar
  75. Mo YW, Okawa Y, Tajima M, Nakai T, Yoshiike N, Katukawa K (2001) Micro-machined gas sensor array based on metal film micro-heater. Sens Actuators B 79:175–181CrossRefGoogle Scholar
  76. Montmeat P, Lalauze R, Viricelle J-P, Tornier G, Pijolat C (2002) Influence of SnO2 thick film thickness on the detection properties. In: Proceedings of Eurosensors XVI, European conference on solid-state transducers, Prague, Czech Republic, 15–18 Sept, pp 1116–1119Google Scholar
  77. Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11:283–287CrossRefGoogle Scholar
  78. Moseley PT, Tofield BC (eds) (1987) Solid state gas sensors. Adam Hilger, BristolGoogle Scholar
  79. Mukundan R, Brosha E, Brown D, Garzon F (1999) Ceria-electrolyte-based mixed potential sensors for the detection of hydrocarbons and carbon monoxide. Electrochem Solid State Lett 2(8):412–414CrossRefGoogle Scholar
  80. Mukundan R, Brosha EL, Brown DR, Garzon FG (2000) A mixed-potential sensor based on a Ce0.8Gd0.2O1.9 electrolyte and platinum and gold electrodes. J Electrochem Soc 147:1583–1588CrossRefGoogle Scholar
  81. Nakatou M, Miura N (2005) Detection of combustible hydrogen-containing gases by using impedancemetric zirconia-based water-vapor sensor. Solid State Ionics 176:2511–2515CrossRefGoogle Scholar
  82. Nielsen J, Jacobsen T (2007) Three-phase boundary dynamics at Pt/YSZ microelectrodes. Solid State Ionics 178:1001–1009CrossRefGoogle Scholar
  83. O’Hayre R, Barnett D, Prinz FB (2005) The triple phase boundary: a mathematical model and experimental investigations for fuel cells. J Electrochem Soc 152:439–444CrossRefGoogle Scholar
  84. Panchapakesan B, DeVoe DL, Widmaier MR, Cavicchi R, Semancik S (2001) Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12:336–349CrossRefGoogle Scholar
  85. Park JH, Kim KH (1999) Improvement of long-term stability in SnO2-based gas sensor for monitoring offensive odor. Sens Actuators B 56:50–58CrossRefGoogle Scholar
  86. Pasierb P, Rekas M (2009) Solid-state potentiometric gas sensors—current status and future trends. J Solid State Electrochem 13:3–25CrossRefGoogle Scholar
  87. Pijolat C (1986) Etudes des propriétés physico-chimiques et des propriétés électriques du dioxyde d’étain en fonction de l’atmosphère gazeuse environnante. Application à la detection sélective des gaz. PhD Thesis, De L’Institut National Polytechnique de GrenobleGoogle Scholar
  88. Plashnitsa VV, Ueda T, Miura N (2006) Improvement of NO2 sensing performances by an additional second component to the nano-structured NiO sensing electrode of YSZ-based mixed-potential-type sensor. Int J Appl Ceram Technol 3:127–133CrossRefGoogle Scholar
  89. Plashnitsa VV, Ueda T, Miura N (2007) Improvement of NO2 a sensing performances by an additional second component to the nano-structured NiO sensing electrode of a YSZ-based mixed-potential-type sensor. Int J Appl Ceram Technol 3(2):27–133Google Scholar
  90. Plashnitsa VV, Ueda T, Elumalai P, Miura N (2008a) NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode. Sens Actuators B 130:231–239CrossRefGoogle Scholar
  91. Plashnitsa VV, Ueda T, Elumalai P, Miura N (2008b) Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO-Au sensing electrode. Ionics 14(1):15–25CrossRefGoogle Scholar
  92. Plashnitsa VV, Elumalai P, Miura N (2008c) Sensitive and selective zirconia-based NO2 sensor using gold nanoparticle coatings as sensing electrodes. J Electrochem Soc 155:301–306CrossRefGoogle Scholar
  93. Ponomareva VG, Lavrova GV, Hairetdinov EF (1997) Hydrogen sensor based on antimonium pentoxide-phosphoric acid solid electrolyte. Sens Actuators B 40:95–98CrossRefGoogle Scholar
  94. Qi Q, Zhang T, Liu L, Zheng X (2009) Synthesis and toluene sensing properties of SnO2 nanofibers. Sens Actuators B 137:471–475CrossRefGoogle Scholar
  95. Sakthivel M, Weppner W (2008) A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect. Int J Hydrogen Energy 33:905–911CrossRefGoogle Scholar
  96. Saukko S, Lantto V (2003) Influence of electrode material on properties of SnO2-based gas sensor. Thin Solid Films 436:137–140CrossRefGoogle Scholar
  97. Schweizer-Berberich M, Barsan N, Weimar U, Morante JR, Gopel W (1997) Electrode effects on gas sensing properties of nanocrystalline SnO2 gas sensors. In: Proceedings of the 11th European conference on solid state transducers, Eurosensors XI, Warsaw, Poland, 21–24 Sept, pp 1377–1380Google Scholar
  98. Shaalan NM, Yamazaki T, Kikuta T (2011) Effect of micro-electrode geometry on NO2 gas-sensing characteristics of one-dimensional tin dioxide nanostructure microsensors. Sens Actuators B 156:784–790CrossRefGoogle Scholar
  99. Shim Y-S, Moon HG, Kim DH, Jang HW, Kang C-Y, Yoon YS, Yoon S-J (2011) Transparent conducting oxide electrodes for novel metal oxide gas sensors. Sens Actuators B 160:357–363CrossRefGoogle Scholar
  100. Sozza A, Dua C, Kerlain A, Brylinski C, Zanoni E (2004) Long-term reliability of Ti–Pt–Au metallization system for Schottky contact and first-level metallization on SiC MESFET. Microelectron Reliab 44:1109–1113CrossRefGoogle Scholar
  101. Sridhar S, Stancovski V, Pal UB (1997) Effect of oxygen containing species on the impedance of the Pt/YSZ interface. Solid State Ionics 100:17–22CrossRefGoogle Scholar
  102. Tamaki J, Miyaji A, Makinodan J, Ogura S, Konishi S (2005) Effect of micro-gap electrode on detection of dilute NO2 using WO3 thin film microsensors. Sens Actuators B 108:202–206CrossRefGoogle Scholar
  103. Thiemann S, Hartung R, Wulff H, Klimke J, Mobius H-H, Guth U, Schonauer U (1996) Modified Au/YSZ electrodes—preparation, characterization and electrode behaviour at higher temperatures. Solid State Ionics 86–88:873–876CrossRefGoogle Scholar
  104. Torres-Huerta AM, Vargas-Garcia JR, Dominguez-Crespo A (2007) Preparation and characterization of IrO2-YSZ nanocomposite electrodes by MOCVD. Solid State Ionics 178:1608–1616CrossRefGoogle Scholar
  105. Vilanova X, Llobet E, Brezmes J, Calderer J, Correig X (1998) Numerical simulation of the electrode geometry and position effects on semiconductor gas sensor response. Sens Actuators B 48:425–431CrossRefGoogle Scholar
  106. Vincenzi D, Butturi MA, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Pignatel GU, Vasiliev AA, Pisliakov AV (2001) Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Sens Actuators B 77:95–99CrossRefGoogle Scholar
  107. Vogel A, Baier G, Schule V (1993) Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials. Sens Actuators B 15:147–150CrossRefGoogle Scholar
  108. Wang J, Chen G, Wang M, Chatrathi MP (2004) Carbon nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst 129(6):512–515CrossRefGoogle Scholar
  109. Wang J, Elumalai P, Terada D, Hasei M, Miura N (2006) Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures. Solid State Ionics 177:2305–2311CrossRefGoogle Scholar
  110. Wang X, Huang H, Holme T, Tian X, Prinz FB (2008) Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. J Power Sources 175(1):75–81CrossRefGoogle Scholar
  111. Westphal D, Jakobs S, Guth U (2001) Gold-composite electrodes for hydrocarbon sensors based on YSZ solid electrolyte. Ionics 7:182–186CrossRefGoogle Scholar
  112. Williams DE (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B 57:1–16CrossRefGoogle Scholar
  113. Wu N, Zhao M, Zheng JG, Jiang C, Myers B, Le S, Chyu M, Mao SX (2005) Porous CuO-ZnO nanocomposite for sensing electrode of high-temperature CO solid-state electrochemical sensor. Nanotechnology 16(12):2878–2881CrossRefGoogle Scholar
  114. Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sens Actuators 4:283–289CrossRefGoogle Scholar
  115. Ylinampa A, Lantto V, Leppavuori S (1993) Some differences between Au and Pt electrodes in SnO2 thick-film gas sensors. Sens Actuators B 13–14:602–604CrossRefGoogle Scholar
  116. Yong YK, Patel M, Vig J, Ballato A (2009) Effects of electromagnetic radiation on the Q of quartz resonators. IEEE Trans Ultrason Ferroelectr Freq Control 56:353–360CrossRefGoogle Scholar
  117. Yoon JW, Grilli ML, Bartolomeo ED, Polini R, Traversa E (2001) The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes. Sens Actuators B 76:483–488CrossRefGoogle Scholar
  118. Yoon SP, Nam SW, Kim SG, Hong SA, Hyun SH (2003) Characteristics of cathodic polarization at Pt/YSZ interface without the effect of electrode microstructure. J Power Sources 115:27–34CrossRefGoogle Scholar
  119. Yoon SP, Nam SW, Han J, Lim TH, Hong SA, Hyun SH (2004) Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells. Solid State Ionics 166:1–11CrossRefGoogle Scholar
  120. Zhuiykov S (2007) Electrochemistry of zirconia gas sensors. CRC, Boca Raton, FLCrossRefGoogle Scholar
  121. Zhuiykov S, Miura N (2005) Solid-state electrochemical gas sensors for emission control. In: Sorrell CC, Sugihara S, Nowotny J (eds) Materials for energy conversion devices. Woodhead Publishing, Cambridge, pp 303–335, Ch. 12CrossRefGoogle Scholar
  122. Zhuiykov S, Miura N (2007) Development of zirconia-based potentiometric NOx sensors for automative and energy industries in the early 21stt century: what are the prospects for sensors? Sens Actuators B 121:639–651CrossRefGoogle Scholar
  123. Zosel J, Westphal D, Jakobs S, Müller R, Guth Y (2002) Au–oxide composites as HC-sensitive electrode material for mixed potential gas sensors. Solid State Ionics 152–153:525–529CrossRefGoogle Scholar
  124. Zosel J, Müller R, Vashook V, Guth U (2004a) Response behavior of perovskites and Au/oxide composites as HC-electrodes in different combustibles. Solid State Ionics 175:531–533CrossRefGoogle Scholar
  125. Zosel J, Ahlborn K, Müller R, Westphal D, Vashook V, Gutha U (2004b) Selectivity of HC-sensitive electrode materials for mixed potential gas sensors. Solid State Ionics 169:115–119CrossRefGoogle Scholar
  126. Zosel J, Schiffel G, Gerlach F, Ahlborn K, Sasum U, Vashook V, Guth U (2006) Electrode materials for potentiometric hydrogen sensors. Solid State Ionics 177:2301–2304CrossRefGoogle Scholar
  127. Zosel J, Tuchtenhagen D, Ahlborn K, Gith U (2008) Mixed potential gas sensor with short response time. Sens Actuators B 130:326–329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Ghenadii Korotcenkov
    • 1
  1. 1.Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea, Republic of (South Korea)

Personalised recommendations