Skip to main content

Materials for Sensor Platforms and Packaging

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 4957 Accesses

Abstract

Platforms are an important element of gas sensors. The present chapter describes different approaches and materials used for platform fabrication. In particular, in this chapter one can find descriptions of conventional platforms, micromachining hotplates, flexible platforms, cantilever-based platforms, and platforms based on paper. Advantages and disadvantages of these platforms used for gas sensor fabrication are analyzed. The chapter includes 16 figures, 7 tables, and 123 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam M, Mohacsy T, Jonas P, Ducso C, Vazsonyi E, Barsony I (2008) CMOS integrated tactile sensor array by porous Si bulk micromachining. Sens Actuators A 142:192–195

    CAS  Google Scholar 

  • Ahn H, Park J-H, Kim S-B, Jee SH, Yoon YS, Kim DJ (2010) Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring. Electrochem Solid-State Lett 13(11):J125–J128

    CAS  Google Scholar 

  • Arena A, Donato B, Saitta G (2009) Capacitive humidity sensors based on MWCNTs/polyelectrolyte interfaces deposited on flexible substrates. Microelectron J 40:887–890

    CAS  Google Scholar 

  • Arena A, Donato N, Saitta G, Bonavita A, Rizzo G, Neri G (2010) Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens Actuators B 145:488–494

    CAS  Google Scholar 

  • Battison FM, Ramseyer J-P, Lang HP, Baller MK, Gerber C, Gimzewski JK, Meyer E, Boisen AJ, Thundat T (2009) Design and fabrication of cantilever array biosensors. Mater Today 12(September):32–38

    Google Scholar 

  • Battiston FM, Ramseyer J-P, Lang HP, Baller MK, Gerber C, Gimzewewski JK, Meyer E, Guntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens Actuators B 77:122–131

    CAS  Google Scholar 

  • Bielska S, Sibinski M, Lukasik A (2009) Polymer temperature sensor for textronic applications. Mater Sci Eng B 165:50–52

    CAS  Google Scholar 

  • Black DR, Harley RA, Hering SV, Stolzenburg MR (2000) A new, portable, real time ozone monitor. Environ Sci Technol 34(14):3031–3040

    CAS  Google Scholar 

  • Boisen A, Thundat T (2009) Design and fabrication of cantilever array biosensors. Mater Today 12:32–38

    Google Scholar 

  • Bracher PJ, Gupta M, Whitesides GM (2010) Patterning precipitates of reactions in paper. J Mater Chem 20:5117–5122

    CAS  Google Scholar 

  • Briand D, Colin S, Gangadharaiah A, Vela E, Dubois P, Thiery L, de Rooij NF (2006) Micro-hotplates on polyimide for sensors and actuators. Sens Actuators A 132:317–324

    CAS  Google Scholar 

  • Briand D, Oprea A, Courbat J, Bârsan N (2011) Making environmental sensors on plastic foil. Mater Today 14(9):416–423

    CAS  Google Scholar 

  • Calleja M, Nordstrom M, Alvarez M, Tamayo J, Lechuga LM, Boisen A (2005) Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105:215–222

    CAS  Google Scholar 

  • Carlier J, Arscott S, Thomy V, Fourrier JC, Caron F, Camart JC, Druon C, Tabourier P (2004) Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis. J Micromech Microeng 14:619–624

    CAS  Google Scholar 

  • Cho N-B, Lim T-H, Jeon Y-M, Gong M-S (2008) Humidity sensors fabricated with photo-curable electrolyte inks using an ink-jet printing technique and their properties. Sens Actuators B 130:594–598

    CAS  Google Scholar 

  • Chuang H-S, Wereley S (2009) Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors. J Micromech Microeng 19:45010

    Google Scholar 

  • Chung S, Makhar S, Ackler H, Park S (2006) Material characterization of carbon-nanotube-reinforced polymer composite. Electron Mater Lett 2(3):175–181

    CAS  Google Scholar 

  • Chung CK, Chang YL, Wu JC, Jhu JJ, Chen TS (2009) Characterization and patterning of novel high-TCR Ta–Si–N thin films for sensor application. Sens Actuators A 156:323–327

    CAS  Google Scholar 

  • Cobianu C, Georgescu I, Buiculescu V (2007) Chip level packaging for wireless surface acoustic wave sensor. US patent 0114889 A1

    Google Scholar 

  • Comini E, Faglia G, Sberveglieri G (2009a) Electrical-based gas sensing. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York, pp 47–107

    Google Scholar 

  • Courbat J, Briand D, Yue L, Raible S, de Rooij NF (2009a) Ultra-low power metal oxide gas sensor on plastic foil. In: Proceedings of IEEE transducers 2009, Denver, CO, 21–25 June 2009a, pp 584–587

    Google Scholar 

  • Courbat J, Briand D, Oprea A, Bârsan N, Weimar U, de Rooij NF (2009b) Multi sensor platform on plastic foil for environmental monitoring. Procedia Chem 1:597–600

    Google Scholar 

  • Courbat J, Briand D, Wöllenstein J, de Rooij NF (2009c) Colorimetric gas sensors based on optical waveguides made on plastic foil. Procedia Chem 1:576–579

    Google Scholar 

  • Courbat J, Canonica M, Teyssieux D, Briand D, de Rooij NF (2010a) Design and fabrication of micro-hotplates made on a polyimide foil: electrothermal simulation and characterization to achieve power consumption in the low mW range. J Micromech Microeng 21(1):015014

    Google Scholar 

  • Courbat J, Briand D, de Rooij N (2010b) Ink-jet printed colorimetric gas sensors on plastic foil. In: Proceedings of SPIE photonic devices + applications conference 2010, San Diego, USA, July 31–August 5

    Google Scholar 

  • Courbat J, Briand D, de Rooij NF (2010c) Foil level packaging of a chemical gas sensor. J Micromech Microeng 20:055026

    Google Scholar 

  • Crawford GP (ed) (2005) Flexible flat panel displays. Wiley, Chichester

    Google Scholar 

  • Crowley K, Morrin A, Hernandez A, O’Malley E, Whitten PG, Wallace GG, Smyth MR, Killard AJ (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77(2):710–717

    CAS  Google Scholar 

  • Curran S, Ajayan PM, Blau W, Carroll DL, Coleman JN, Dalton A, Davey AP, McCarthy B (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv Mater 10:1091–1093

    CAS  Google Scholar 

  • Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, Bontempelli G (2012) An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 12(1):153–158

    CAS  Google Scholar 

  • Dusco C, Vazzonyi E, Adam M, Szabo I, Barsony I, Gardeniers JGE, Van den Berg A (1997) Porous silicon bulk micromachining for thermally isolated membrane formation. Sens Actuators A 60:235–239

    Google Scholar 

  • Fragakis J, Chatzandroulis S, Papadimitriou D, Tsamis C (2005) Simulation of capacitive type bimorph humidity sensors. J Phys Confer Ser 10:305–308

    CAS  Google Scholar 

  • Francioso L, Forleo A, Taurino AM, Siciliano P, Lorenzelli L, Guarnieri V, Adami A, Agnusdei G (2008) Linear temperature microhotplate gas sensor array for automotive cabin air quality monitoring. Sens Actuators B 134:660–665

    CAS  Google Scholar 

  • Friedberger A, Kreisl P, Rose E, Muller G, Kuhner G, Wollenstein J, Bottner H (2003) Micromechanical fabrication of robust low-power metal-oxide gas sensors. Sens Actuators B 93:345–349

    CAS  Google Scholar 

  • Furjes P, Ducso C, Adam M, Zettner J, Barsony I (2004) Thermal characterisation of micro-hotplates used in sensor structures. Superlattice Microstruct 35:455–464

    CAS  Google Scholar 

  • Geyh AS, Wolfson JM, Koutrakis P, Mulik JD, Avol EL (1997) Development and evaluation of a small active ozone sampler. Environ Sci Technol 31:2326–2330

    CAS  Google Scholar 

  • Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542

    CAS  Google Scholar 

  • Graf M, Barrettino D, Baltes HP, Hierlemann A (2007) CMOS hotplate chemical microsensors. Springer, Berlin

    Google Scholar 

  • Gu P-G, Lee C-T, Chou C-Y, Cheng K-H, Chuang Y-S (2009) Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties. Sens Actuators B 139:488–493

    Google Scholar 

  • Guidi V, Cardinali G, Dori L, Faglia G, Ferroni M, Martinelli G, Nelli P, Sberveglieri G (1998) Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure. Sens Actuators B 49:88–92

    CAS  Google Scholar 

  • Guntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance frequency and bending readout. Sens Actuators B 77:122–131

    Google Scholar 

  • Han PG, Wong H, Poon MC (2001) Sensitivity and stability of porous polycrystalline silicon gas sensor. Colloids Surf A 179:171–175

    CAS  Google Scholar 

  • Hedrich F, Billat S, Lang W (2000) Structuring of membrane sensors using sacrificial porous silicon. Sens Actuators A 84:315–323

    CAS  Google Scholar 

  • Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H (2000) Application-specific sensor systems based on CMOS chemical microsensors. Sens Actuators B 70:2–11

    CAS  Google Scholar 

  • Horrillo M, Sayago I, Ares L, Rodrigo J, Gutirrez J, Gotz A, Gracia I, Fonseca L, Cane C, Lora-Tamayo E (1999) Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors. Sens Actuators B 58:325–329

    CAS  Google Scholar 

  • Huanget A, Wong VTS, Ho C-M (2006) Silicone polymer chemical vapor sensors fabricated by direct polymer patterning on substrate technique (DPPOST). Sens Actuators B 116:2–10

    Google Scholar 

  • Huo H, Ren H, Wang C, Shen M (2011) Highly sensitive gas sensors on low-cost nanostructured polymer substrates. Intern J Smart Nano Mater 2(1):1–8

    CAS  Google Scholar 

  • Jeong HY, Lee D-S, Choi HK, Lee DH, Kim J-E, Lee JL, Lee WJ, Kim SO, Choi S-Y (2010) Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl Phys Lett 96:213105

    Google Scholar 

  • Jiguet S, Bertsch A, Hofmann H, Renaud P (2004) SU8-silver photosensitive nanocomposite. Adv Eng Mater 6:719–724

    CAS  Google Scholar 

  • Johansson A, Calleja M, Rasmussen PA, Boisen A (2005) SU-8 cantilever sensor system with integrated readout. Sens Actuators A 123–124:111–115

    Google Scholar 

  • Johansson A, Blagoi G, Boisen A (2006) Polymeric cantilever-based biosensors with integrated readout. Appl Phys Lett 89:173505

    Google Scholar 

  • Ki YS (2006) Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate. Sens Actuators B 114:410–417

    Google Scholar 

  • Kinkeldei T, Zysset C, Münzenrieder N, Tröster G (2012) Influence of flexible substrate materials on the performance of polymer composite gas sensors. In: Proceedings of the 14th international meeting on chemical sensors, IMCS 2012, Nuremberg, Germany, May 20–23, pp 537–540

    Google Scholar 

  • Koutrakis P, Wolfson J, Bunyaviroch A, Forchlich SE, Hirano K, Mulik JD (1993) Measurement of ambient ozone using a nitrite-coated filter. Anal Chem 65:209–214

    CAS  Google Scholar 

  • Krebs FC, Fyenbo J, Jørgensen M (2010) Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J Mater Chem 20(41):8994–9001

    CAS  Google Scholar 

  • Lang W (1996) Silicon microstructuring technology. Mater Sci Eng R 17:1–55

    Google Scholar 

  • Lang HP, Gerber C (2008) Microcantilever sensors. Top Curr Chem 285:1–27

    CAS  Google Scholar 

  • Lang W, Steiner P, Schaber U, Richter A (1994a) A thin film bolometer using porous silicon technology. Sens Actuators A 43:185–187

    Google Scholar 

  • Lang W, Steiner P, Richter A, Marusczyk K, Weimann G, Sandmaier H (1994b) Applications of porous silicon as a sacrificial layer. Sens Actuators A 43:239–242

    Google Scholar 

  • Lang HP, Filippi A, Tonin A, Huber F, Backmann N, Zhang J, Gerbe C (2009) Towards a modular, versatile and portable sensor system for measurements in gaseous environments based on microcantilevers. Procedia Chem 1:208–211

    CAS  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskosa PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75(7):2229–2253

    CAS  Google Scholar 

  • Lee JB, Heeney M, Tiemey S, McCulloch I, Murphy A, Liu J, Fréchet JMJ, Subramanian V (2005) Stability in OTFT gas sensors. MRS Symp Proc 871:6–11

    Google Scholar 

  • Lee C-Y, Wu G-W, Hsieh W-J (2008) Fabrication of micro sensors on a flexible substrate. Sens Actuators A 147:173–176

    CAS  Google Scholar 

  • Li P, Li X (2006) A single-sided micromachined piezoresistive SiO2 cantilever sensor for ultra-sensitive detection of gaseous chemicals. J Micromech Microeng 16:2539–2546

    CAS  Google Scholar 

  • Li X, Tian JF, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloid Surf B 76:564–570

    CAS  Google Scholar 

  • Liana DD, Raguse B, Gooding J.J J, Chow E (2012) Recent advances in paper-based sensors. Sensors 12:11505–11526

    CAS  Google Scholar 

  • Lim MA, Kim DH, Park C-O, Lee YW, Han SW, Li Z, Williams RS, Park I (2012) A new route toward ultrasensitive, flexible chemical sensors: metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates. ACS Nano 6(1):598–608

    CAS  Google Scholar 

  • Liu C-C (1996) Electrochemical sensors: microfabrication techniques. In: Taylor RF, Schultz JS (eds) Handbook of chemical and biological sensors. IOP, Bristol, Chapter 16

    Google Scholar 

  • Liu X, Mwangi M, Li X-J, O’Brien M, Whitesides G.M. M (2011) Paper-based piezoresistive MEMS sensors. Lab Chip 11:2189–2196

    CAS  Google Scholar 

  • Logothetidis S (2008) Flexible organic electronic devices: materials, process and applications. Mater Sci Eng B 152:96–104

    CAS  Google Scholar 

  • Manzoli A, Steffens C, Paschoalin RT, Correa AA, Alves WF, Leite FL, Herrmann PSP (2011) Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness. Sensors 11:6425–6434

    CAS  Google Scholar 

  • Marinov VR, Atanasov YA, Khan A, Vaselaar D, Halvorsen A, Schulz DL, Chrisey DB (2007) Direct-write vapor sensors on FR4 plastic substrates. IEEE Sensor J 7(6):937–944

    CAS  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    CAS  Google Scholar 

  • Martorelli JV (2008) Monolithic CMOS-MEMS resonant beams for ultrasensitive mass detection. Ph.D. thesis, Universitat Autonoma de Barcelona, Spain

    Google Scholar 

  • Maruo YY (2007) Measurement of ambient ozone using newly developed porous glass sensor. Sens Actuators B 126:485–491

    CAS  Google Scholar 

  • Maruo YY, Kunioka T, Akaoka K, Nakamura J (2009) Development and evaluation of ozone detection paper. Sens Actuators B 135:575–580

    CAS  Google Scholar 

  • Maruo YY, Akaoka K, Nakamura J (2010) Development and performance evaluation of ozone detection paper using azo dye orange I: effect of pH. Sens Actuators B 143:487–493

    CAS  Google Scholar 

  • Mastrangelo C, Tang W (1994) Semiconductor sensor technologies. In: Sze S (ed) Semiconductor sensors. Wiley, New York, pp 17–95

    Google Scholar 

  • Mayr T, Abel T, Enko B, Borisov S, Konrad C, Köstler S, Lamprecht B, Sax S, List EJW, Klimant I (2009) A planar waveguide optical sensor employing simple light coupling. Analyst 134:1544–1547

    CAS  Google Scholar 

  • McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384

    CAS  Google Scholar 

  • McFarland AW, Colton JS (2005a) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060–1067

    Google Scholar 

  • McFarland AW, Colton JS (2005b) Chemical sensing with micromolded plastic microcantilevers. J Microelectromech Syst 14:1375–1385

    CAS  Google Scholar 

  • McFarland AW, Poggi MA, Bottomley LA, Colton JS (2004) Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers. Nanotechnology 15:1628–1632

    CAS  Google Scholar 

  • Miller TA, Bakrania SD, Perez C, Wooldridge MS (2006) Nanostructured tin dioxide materials for gas sensor applications. In: Geckeler KE, Rosenberg E (eds) Functional nanomaterials. American Scientific Publishers, Stevenson Ranch, CA, pp 1–24

    Google Scholar 

  • Mitchell JS, Oliver R, Jordan B (2012) Printable paper-based polymer sensors for detection of vapor phase alcohols. In: Proceedings of the 14th international meeting on chemical sensors, IMCS 2012, Nuremberg, Germany, May 20–23, pp 1109–1111

    Google Scholar 

  • Miyoshi Y, Miyajima K, Saito H, Kudo H, Takeuchi T, Karube I, Mitsubayashi K (2009) Flexible humidity sensor in a sandwich configuration with a hydrophilic porous membrane. Sens Actuators B 142:28–32

    CAS  Google Scholar 

  • Mlcak R, Tuller HL, Greiff P, Sohn J, Niles L (1994) Photoassisted electrochemical micromachining of silicon in HF electrolytes. Sens Actuators A 40:49–55

    CAS  Google Scholar 

  • Moser Y, Gijs MAM (2007) Miniaturized flexible temperature sensor. J Microelectromech Syst 16(6):1349–1354

    CAS  Google Scholar 

  • Oprea A, Barsan N, Weimar U, Courbat J, Briand D, de Rooij NF (2007) Integrated temperature, humidity and gas sensors on flexible substrates for low-power applications. In: Proceedings IEEE sensors conference, Atlanta, USA, Oct 28–31, pp 158–161

    Google Scholar 

  • Oprea A, Barsan N, Weimar U, Bauersfeld ML, Ebling D, Wцllenstein J (2008) Capacitive humidity sensors on flexible RFID labels. Sens Actuators B 132:404–410

    CAS  Google Scholar 

  • Oprea A, Courbat J, Bârsan N, Briand D, de Rooij NF, Weimar U (2009) Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sens Actuators B 140:227–232

    CAS  Google Scholar 

  • Oprea A, Courbat J, Briand D, Bârsan N, Weimar U, de Rooij NF (2012) Environmental monitoring with a multisensor platform on polyimide foil. Sens Actuators B 171–172:190–197

    Google Scholar 

  • Papadimitriou D, Tsamis C (2005) Simulation of capacitive type bimorph humidity sensors. J Phys Conf Ser 10:305–308

    Google Scholar 

  • Parikh K, Cattanach K, Rao R, Suh D-S, Wu A, Manohar SK (2006) Flexible vapour sensors using single walled carbon nanotubes. Sens Actuators B 113:55–63

    CAS  Google Scholar 

  • Pecora A, Zampetti E, Pantalei S, Valletta A, Minotti A, Maiolo L, Simeone D, Cuscunа M, Bearzotti A, Macagnano A, Mariucci L, Fortunato G (2008) Interdigitated sensorial system on flexible substrate. In: Proceedings of the seventh IEEE conference on sensors, IEEE SENSORS, Lecce, Italy, Oct 26–29, 21–24

    Google Scholar 

  • Potyrailo RA, Morris WG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal Chem 79:45–51

    CAS  Google Scholar 

  • Prudenziati M (ed) (1994) Thick film sensors (Middelhoek S. (series ed) Handbook of sensors and actuators, vol. 1. Elsevier, Amsterdam

    Google Scholar 

  • Ransley JHT, Watari M, Sukumaran D, McKendry RA, Seshia AA (2006) SU8 bio-chemical sensor microarrays. Microelectron Eng 83:1621–1625

    CAS  Google Scholar 

  • Salcedo WJ, Ramirez Fernandez FJ, Rubim JC (2004) Photoluminescence quenching effect on porous silicon films for gas sensors application. Spectrochim Acta A 60:1065–1070

    Google Scholar 

  • Schweizer-Berberich M, Strathmann S, Weimar U, Sharma R, Seube A, Peyre-Lavigne A, Göpel W (1999) Strategies to avoid VOC cross-sensitivity of SnO2-based CO sensors. Sens Actuators B 58:318–324

    CAS  Google Scholar 

  • Shih W-P, Tsao L-C, Lee C-W, Cheng M-Y, Chang C, Yang Y-J, Fan K-C (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors 10:3597–3610

    CAS  Google Scholar 

  • Shin W, Matsumiya M, Izu N, Murayama N (2003) Hydrogen-selective thermoelectric gas sensor. Sens Actuators B 93:304–308

    CAS  Google Scholar 

  • Shin W, Choi Y, Tajima K, Izu N, Matsubara I, Murayama N (2005) Planar catalytic combustor film for thermoelectric hydrogen sensor. Sens Actuators B 108:455–460

    CAS  Google Scholar 

  • Simon I, Bârsan N, Bauer M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B 73:1–26

    CAS  Google Scholar 

  • Spannhake J, Schulz O, Helwig A, Krenkow A, Müller G, Doll T (2006) High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials. Sensors 6:405–419

    Google Scholar 

  • Splinter A, Bartels O, Benecke W (2001) Thick porous silicon formation using implanted mask technology. Sens Actuators B 76:354–360

    CAS  Google Scholar 

  • Steffens C, Manzoli A, Francheschi E, Corazza M, Corazza F, Oliveira JV, Herrmann P (2009) Low-cost sensors developed on paper by line patterning with graphite and polyaniline coating with supercritical CO2. Synth Met 159:2329–2332

    CAS  Google Scholar 

  • Steiner P, Lang W (1995) Micromachining applications of porous silicon. Thin Solid Films 255:52–58

    CAS  Google Scholar 

  • Su PG, Lee CT, Chou CY (2009a) Flexible NH3 sensors fabricated by in situ self-assembly of polypyrrole. Talanta 80(2):763–769

    CAS  Google Scholar 

  • Su P-G, Lee C-T, Chou C-Y, Cheng K-H, Chuang Y-S (2009b) Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties. Sens Actuators B 139:488–493

    CAS  Google Scholar 

  • Su P-G, Tseng J-Y, Huang Y-C, Pan H-H, Li P-C (2009c) Novel fully transparent and flexible humidity sensor. Sens Actuators B 137:496–500

    CAS  Google Scholar 

  • Subramanian V, Chang P, Lee JB, Molesa SE, Volkman SK (2005) Printed organic transistors for ultra-low-cost RFID applications. IEEE Trans Comp Packag Technol 28(4):742–747

    CAS  Google Scholar 

  • Suehle JS, Cavicchi RE, Gaitan M, Semancik M (1993) Tin oxide gas sensor fabricated using CMOS micro hotplates and in-situ processing. IEEE Electron Device Lett 14:118–120

    CAS  Google Scholar 

  • Tabata O (1986) Fast-response silicon flow sensor with an on-chop fluid temperature sensing element. IEEE Trans Electron Devices Ed-33:361–365

    CAS  Google Scholar 

  • Triantafyllopoulou R, Chatzandroulis S, Tsamis C, Tserepi A (2006) Alternative micro-hotplate design for low power sensor arrays. Microelectron Eng 83:1189–1191

    CAS  Google Scholar 

  • Tsamis C, Nassiopoulou AG, Tserepi A (2003) Thermal properties of suspended porous silicon micro-hotplates for sensor applications. Sens Actuators B 95:78–82

    CAS  Google Scholar 

  • Urbiztondo MA, Pellejero I, Villarroya M, Sese J, Pina MP, Dufour I, Santamaria J (2009) Zeolite-modified cantilevers for the sensing of nitrotoluene vapors. Sens Actuators B 137:608–616

    CAS  Google Scholar 

  • Vergara A, Llobet E, Ramнrez JL, Ivanov P, Fonseca L, Zampolli S, Scorzoni A, Becker T, Marco S, Wцllenstein J (2007) An RFID reader with onboard sensing capability for monitoring fruit quality. Sens Actuators B 127:143–149

    CAS  Google Scholar 

  • Wang Y, Yang Z, Hou Z, Xu D, Wei L, Kong ES-W, Zhang Y (2010a) Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sens Actuators B 150:708–714

    CAS  Google Scholar 

  • Wang L, Luo J, Yin J, Zhang H, Wu J, Shi X, Crew E, Xu Z, Rendeng Q, Lu S, Poliks M, Sammakia B, Zhong C-J (2010b) Flexible chemiresistor sensors: thin film assemblies of nanoparticles on a polyethylene terephthalate substrate. J Mater Chem 20:907–915

    CAS  Google Scholar 

  • Weng B, Shepherd RL, Crowley K, Killard AJ, Wallace GG (2010) Printing conducting polymers. Analyst 135:2779–2789

    CAS  Google Scholar 

  • William W, Boardman J (1975) Semiconductor gas sensor and method therefore. US Patent 3901067

    Google Scholar 

  • Woszczyna M, Gotszalk T, Zawierucha P, Zielony M, Ivanow T, Ivanowa K, Sarov Y, Nikolov N, Mielczarski J, Mielczarska E, Rangelow IW (2009) Thermally driven piezoresistive cantilevers for shear-force microscopy. Microelectron Eng 86:1212–1215

    CAS  Google Scholar 

  • Xu JM (2000) Plastic electronics and future trends in microelectronics. Synth Met 115:1–3

    CAS  Google Scholar 

  • Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl Mater Interfaces 3:642–647

    CAS  Google Scholar 

  • Zampetti E, Pantalei S, Pecora A, Valletta A, Maiolo L, Minotti A, Macagnano A, Fortunato G, Bearzotti A (2009) Design and optimization of an ultra thin flexible capacitive humidity sensor. Sens Actuators B 143:302–397

    Google Scholar 

  • Zeitschel A, Friedberger A, Welser W, Muller G (1999) Breaking the isotropy of porous silicon formation by current focusing. Sens Actuators A 74:113–117

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Materials for Sensor Platforms and Packaging. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_7

Download citation

Publish with us

Policies and ethics