Skip to main content

Solid Electrolytes for Detecting Specific Gases

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Metal oxides have the best combination of properties required for designing gas sensors aimed at the detection of a great number of gases and vapors. However, it was found that in several cases connected with the detection of specific gases, such as CO2, H2, SO2, and NO x at low operating temperatures, other materials, in particular solid electrolytes based on various salts, can be preferable. The present chapter analyzes these materials and includes a general overview of electrochemical solid electrolyte-based gas sensors, describing the ideal solid electrolyte for application in gas sensors. Various gas sensors, which can be based on different solid electrolytes are discussed And the cross sensitivity of solid electrolyte-based gas sensors is analyzed. The chapter includes 15 figures, 5 tables, and 91 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akridge JR, Balkanski M (eds) (1990) Solid state microbatteries. Plenum, New York, pp 381–393

    Google Scholar 

  • Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16

    Article  CAS  Google Scholar 

  • Alberti G, Palombari R (1989) All solid state hydrogen sensors based on pellicular α-zirconium phosphate as a protonic conductor. Solid State Ionics 35:153–156

    Article  Google Scholar 

  • Alberti G, Carbone A, Palombari R (2001) Solid state potentiometric sensor at medium temperatures (150–300 °C) for detecting oxidable gaseous species in air. Sens Actuators B 75:125–128

    Article  CAS  Google Scholar 

  • Bartholomaus L, Moritz W (2000) Super-sensitivity of an all solid-state fluorine sensor: mechanistic investigations. Solid State Ionics 132:31–37

    Article  CAS  Google Scholar 

  • Bhoga SS, Singh K (2007) Electrochemical solid state gas sensors: an overview. Ionics 13:417–427

    Article  CAS  Google Scholar 

  • Boivin JC, Mairesse G (1998) Recent material development in fast oxide ion conductors. Chem Mater 10:2870–2888

    Article  CAS  Google Scholar 

  • Chehab SF, Canaday JD, Kuriakose AK, Wheat TA, Ahmad A (1991) A hydrogen sensor based on bonded hydronium NASICON. Solid State Ionics 45:299–310

    Article  CAS  Google Scholar 

  • Colomban P (1999) Latest developments in proton conductors. Ann Chim Sci Mater 24:1–18

    Article  CAS  Google Scholar 

  • Côtè R, Bale CW, Gauthier M (1984) K2CO3 solid electrolyte as a CO2 probe: decomposition measurements of CaCO3. J Electrochem Soc 131:63–67

    Article  Google Scholar 

  • Daiko Y, Kasuga T, Nogami M (2003) Sol–gel preparation of fast proton-conducting P2O5-SiO2 glasses. J Sol Gel Sci Technol 26:1041–1044

    Article  Google Scholar 

  • Dell RM (1975) The application of solid state ionic devices. In: Klettz M (ed) Electrode processes in solid state ionics, NATO advanced study institute series C. Kluwer, Dordrecht, pp 387–410

    Google Scholar 

  • Dénès G, Madamba MC, Muntasar A (1998) Reactivity and stability of superionics MSnF4 at high temperature in various media. MRS Proc 547:371–376

    Article  Google Scholar 

  • Deniard-Courant S, Piffard Y, Barboux P, Livage J (1988) Relative humidity influence on the water content and on the protonic conductivity of the phosphatoantimonic acids H n Sb n P2O3n+5, xH2O (n = 1, 3, 5). Solid State Ionics 27:189–194

    Article  CAS  Google Scholar 

  • Gauthier M, Chamberland A (1977) Solid-state detectors for the potentiometric determination of gaseous oxides. J Electrochem Soc 124:1579–1583

    Article  CAS  Google Scholar 

  • Guth U (2008) Gas sensors. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, pp 294–299

    Google Scholar 

  • Holzinger M, Maier J, Sitte W (1996) Fast CO2-selective potentiometric sensor with open reference electrode. Solid State Ionics 86–88:1055–1062

    Article  Google Scholar 

  • Hotzel G, Weppner W (1987) Potentiometric gas sensors based on fast solid electrolytes. Sens Actuators 12:449–453

    Article  Google Scholar 

  • Imanaka N (2005) Novel multivalent cation conducting ceramics and their application. J Ceram Soc Jpn 113(6):387–393

    Article  CAS  Google Scholar 

  • Imanaka N, Yamaguchi Y, Adachi G, Shiokawa J (1987) Sulfur dioxide gas detection with Na2SO4-Li2SO4-Y2(SO4)3-SiO2 solid electrolyte by a solid reference electrode method. J Electrochem Soc 134:725–728

    Article  CAS  Google Scholar 

  • Imanaka N, Kawasato T, Adachi G (1990) A carbon dioxide gas sensor probe based on a lithium ionic conductor. Chem Lett 1990:497–500

    Article  Google Scholar 

  • Imanaka N, Kawasato T, Adachi G (1991) Selective CO2 detection with a lithium conductor based sensor. Chem Lett 1991:13–16

    Article  Google Scholar 

  • Imanaka N, Murata T, Kawasato T, Adachi G (1993) CO2 detection with lithium solid electrolyte sensors. Sens Actuators B 13–14:476–479

    Article  Google Scholar 

  • Imanaka N, Hirota Y, Adachi G (1995) A tip-type carbon dioxide gas-sensor probe based on lithium and oxide ionic conductors. Sens Actuators B 24–25:380–382

    Article  Google Scholar 

  • Iwahara H, Yamajima T, Hibino T, Ozaki K, Suzuki H (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61:65–69

    Article  CAS  Google Scholar 

  • Jacob KT, Rao DB (1979) A solid-state probe for SO2/SO3 based on Na2SO4-I electrolyte. J Electrochem Soc 126:1842–1847

    Article  CAS  Google Scholar 

  • Kale GM, Wang L, Hong YR (2003) Planar SO X sensor incorporating a bi-electrolyte couple. Solid State Ionics 161:155–163

    Article  CAS  Google Scholar 

  • Kim D-H, Yoon J-Y, Park H-C, Kim K-H (2001) Fabrication and characteristics of CO2-gas sensor using Li2CO3-Li3PO4-Al2O3 electrolyte and LiMn2O4 reference electrode. Sens Actuators B 76:594–599

    Article  CAS  Google Scholar 

  • Kleperis J, Bayars G, Vaivars G, Kranevskis A, Lusis A (1992) Solid electrolytes in sensor technology. Sov Electrochem 28:1181–1186

    Google Scholar 

  • Korotcenkov G, Han S-D, Stetter JR (2009) Review of electrochemical hydrogen sensors. Chem Rev 109:1402–1433

    Article  CAS  Google Scholar 

  • Kumar RV, Fray DJ (1988) Development of solid-state hydrogen sensors. Sens Actuators 15:185–191

    Article  CAS  Google Scholar 

  • Kumar PP, Yashonath S (2006) Ionic conduction in the solid state. J Chem Sci 118(1):135–154

    Article  CAS  Google Scholar 

  • Kuwano J, Eguchi T, Saito Y (1997) Ambient temperature oxygen sensors based on fluoride solid electrolyte: the roles of the constituents in the sensing electrode mixtures containing phthalocyanines. Talanta 44(4):705–712

    Article  CAS  Google Scholar 

  • Kuwato J, Asano M, Shigehara K, Kato M (1990) Ambient temperature solid-state oxygen sensor using fast ion conductors PbSnF4 and Ag6I4WO4. Solid State Ionics 40(41):472–475

    Google Scholar 

  • Lang T, Wiemhofer H-D, Gopel W (1996) Carbonate based CO2 sensors with high performance. Sens Actuators B 34:383–387

    Article  CAS  Google Scholar 

  • Lee C, Akbar SA, Park CO (2001) Potentiometric type CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sens Actuators B 80:234–242

    Article  CAS  Google Scholar 

  • Lee J-S, Lee J-H, Hong S-H (2003) NASICON-based amperometric CO2 sensor using Na2CO3–BaCO3 auxiliary phase. Sens Actuators B 96:663–668

    Article  CAS  Google Scholar 

  • Liu J, Weppner W (1990) “Beta” – alumina solid electrolytes for solid state electrochemical CO2 gas sensors. Solid State Comm 76(3):311–313

    Article  CAS  Google Scholar 

  • Liu J, Weppner W (1992) A new concept for advanced solid-state ionic gas sensors. In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier Science, Amsterdam, pp 61–68

    Google Scholar 

  • Liu QG, Worrell WL (1986) Electrical conductivity of Li2SO4-Ag2SO4 solid electrolytes. Solid State Ionics 18–19:524–528

    Article  Google Scholar 

  • Lukaszewicz JP, Miura N, Yamazoe N (1992) LaF3-based oxygen sensor using Pb phthalocyanine electrode for quick response at room temperature. Sens Actuators B 9:55–58

    Article  CAS  Google Scholar 

  • Maruyama T, Saito Y, Matsumoto Y, Yano Y (1985) Potentiometric sensor for sulfur oxides using NASICON as a solid electrolyte. Solid State Ionics 17:281–286

    Article  CAS  Google Scholar 

  • Maruyama T, Sasaki S, Saito Y (1987) Potentiometric gas sensor for carbon dioxide using solid electrolytes. Solid State Ionics 23:107–112

    Article  CAS  Google Scholar 

  • Matsubara S, Kaneko S, Morimoto S, Shimizu S, Ishihara T, Takita Y (2000) A practical capacitive type CO2 sensors using CeO/BaCO3/CuO. Sens Actuators B 65:128–132

    Article  CAS  Google Scholar 

  • Miura N, Yamazoe N (1992a) Development of new chemical sensors based on low-temperature proton conductors. Solid State Ionics 53–56:975–982

    Article  Google Scholar 

  • Miura N, Yamazoe N (1992b) Solid-state gas sensors operating at room temperature. In: Colomban P (ed) Chemistry of solid state materials 2: proton conductors. Cambridge University Press, Cambridge, p 527

    Google Scholar 

  • Miura N, Kato H, Yamazoe N, Seiyama T (1983) Mixed potential type NOx sensor based on stabilized zirconia. In: Proceedings of international meeting of chemical sensors, Fukuoka, Japan. Kodansha/Elsevier, Tokyo/Amsterdam, p 233

    Google Scholar 

  • Miura N, Harada T, Yamazoe N (1989a) Sensing characteristics and working mechanism of four-probe type solid-state hydrogen sensor using proton conductor. J Electrochem Soc 136:1215–1219

    Article  CAS  Google Scholar 

  • Miura N, Hisamoto J, Yamazoe N, Kuwata S, Salardenne J (1989b) Solid-state oxygen sensor using sputtered LaF3 film. Sens Actuators 16:301–310

    Article  CAS  Google Scholar 

  • Miura N, Harada T, Shimizu Y, Yamazoe N (1990) Cordless solid-state hydrogen sensor using proton-conductor thick film. Sens Actuators B 1:125–129

    Article  CAS  Google Scholar 

  • Miura N, Yao S, Shimizy Y, Yamazoe N (1992) High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode. Sens Actuators B 9:165–170

    Article  CAS  Google Scholar 

  • Miura N, Yao S, Shimizu Y, Yamazoe N (1993) Development of high-performance solid electrolyte sensors for NO and NO2. Sens Actuators B 13–14:387–390

    Article  Google Scholar 

  • Miura N, Yao S, Shimizu Y, Yamazoe N (1994) New auxiliary sensing materials for solid electrolyte NO2 sensors. Solid State Ionics 70–71:572–577

    Article  Google Scholar 

  • Miura N, Yan Y, Sato M, Yao S, Nonaka S, Shimizu Y, Yamazoe N (1995) Solid state potentiometric CO2 sensors using anion conductor and metal carbonate. Sens Actuators B 24–25:260–265

    Article  Google Scholar 

  • Miura N, Lu G, Yamazoe N (2000) Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ionics 136–137:533–542

    Article  Google Scholar 

  • Moritz W, Fillipov V, Vasiliev A, Bartholomaus L, Terentjev A (1999) Field-effect sensor for the selective detection of fluorocarbons. J Fluor Chem 93:61–67

    Article  CAS  Google Scholar 

  • Nagao M, Namekata Y, Hibino T, Sano M, Tomita A (2006) Intermediate-temperature NOx sensor based on an In3+-doped SnP2O7 proton conductor. Electrochem Solid State Lett 9:H48–H51

    Article  CAS  Google Scholar 

  • Narita H, Zhang YC, Mizusaki J, Tagawa H (1995) Solid state CO2 sensor using an electrolyte in the system Li2CO3-Li3PO4-Al2O3. Solid State Ionics 79:349–353

    Article  CAS  Google Scholar 

  • Nogami M, Matsumura M, Daiko Y (2006) Hydrogen sensor prepared using fast proton-conducting glass films. Sens Actuators B 120:266–269

    Article  CAS  Google Scholar 

  • Park CO, Akbar SA, Weppner W (2003) Ceramic electrolytes and electrochemical sensors. J Mater Sci 38:4639–4660

    Article  CAS  Google Scholar 

  • Park CO, Fergus JW, Miura N, Park J, Choi A (2009) Solid-state electrochemical gas sensors. Ionics 15:261–284

    Article  CAS  Google Scholar 

  • Phair JW, Badwal SPS (2006) Review of proton conductors for hydrogen separation. Ionics 12:103–115

    Article  CAS  Google Scholar 

  • Ponomareva VG, Lavrova GV, Hairetdinov EF (1997) Hydrogen sensor based on antimonium pentoxide-phosphoric acid solid electrolyte. Sens Actuators B 40:95–98

    Article  CAS  Google Scholar 

  • Porta MA, Kumar RV (2000) Use of NASICON/Na2CO3 system for measuring CO2. Sens Actuators B 71:173–178

    Article  Google Scholar 

  • Rao CNR, Gopalakrishnan J (1997) New directions in solid state chemistry. Cambridge University Press, Cambridge, pp 409–416

    Book  Google Scholar 

  • Rao N, van den Bleek CM, Schoonman J (1992) A novel temperature-gradient Na+-β″-alumina solid electrolyte based SO x gas sensor without gaseous reference electrode. Solid State Ionics 53–56:30–38

    Article  Google Scholar 

  • Singh K, Ambekar P, Bhoga SS (1999) An investigation of Na2CO3–ABO3 (A = Li/K/Ba and B = Nb/Ti) heterogeneous solid electrolyte systems for electrochemical CO2 gas sensor application. Solid State Ionics 122:191–196

    Article  CAS  Google Scholar 

  • Stevens R, Binner JGP (1984) Structure, properties and production of β-alumina. J Mater Sci 19:695–715

    Article  CAS  Google Scholar 

  • Sun G, Wang H, Jiang Z (2011) Humidity response properties of a potentiometric sensor using LaF3 thin film as the solid electrolyte. Rev Sci Instrum 82(8):083901

    Article  Google Scholar 

  • Szabo N, Lee C, Trimboli J, Figueroa O, Ramamoorthy R, Midlam-Mohler S, Soliman A, Verweij H, Dutta P, Akbar S (2003) Ceramic-based chemical sensors, probes and field-tests in automobile engines. J Mater Sci 38:4239–4245

    Article  CAS  Google Scholar 

  • Tan G-L, Wu X-J, Wang LR, Chen Y-Q (1996) Investigation for oxygen sensor of LaF3 thin film. Sens Actuators B 34:417–421

    Article  CAS  Google Scholar 

  • Tomita A, Namekata Y, Nagao M, Hibino T (2007) Room-temperature hydrogen sensors based on an In3+-doped SnP2O7 proton conductor. J Electrochem Soc 154:J172–176

    Article  CAS  Google Scholar 

  • Treglazov I, Leonova L, Dobrovolsky Y, Ryabov A, Vakulenko A, Vassiliev S (2005) Electrocatalytic effects in gas sensors based on low-temperature superprotonics. Sens Actuators B 106:164–169

    Article  CAS  Google Scholar 

  • Tuller HL, Moon PK (1988) Fast ion conductors: future trends. Mater Sci Eng B 1:171–191

    Article  Google Scholar 

  • Ukshe E, Leonova L (1992) Potentiometric hydrogen sensors with proton conducting solid electrolytes. Sov Electrochem 28:1166–1175

    Google Scholar 

  • Velasco G, Schneli JP, Croset M (1982) Thin solid-state electrochemical gas sensors. Sens Actuators 2:371–384

    CAS  Google Scholar 

  • Wakagi A, Kuwano J (1994) Amperometric PbSnF4-based oxygen sensors: rapid response at room temperature in the operating pressure range 10 kPa-7.2 MPa. J Mater Chem 4(6):973–975

    Article  CAS  Google Scholar 

  • Wang L, Kumar RV (2004) Cross-sensitivity effects on a new carbon dioxide gas sensor based on solid bielectrolyte. Meas Sci Technol 15:1005–1010

    Article  CAS  Google Scholar 

  • Weppner W (1987) Solid-state electrochemical gas sensors. Sens Actuators 12:107–119

    Article  CAS  Google Scholar 

  • Weppner W (1992) Advanced principles of sensors based on solid state ionics. Mater Sci Eng B 15:48–55

    Article  Google Scholar 

  • Weppner W (2000) Concepts and materials aspects of developing solid state ionic devices. In: Chowdari BVR, Wang W (eds) Proceedings of the 7th Asian conference on solid state ionics: materials and devices. Word Scientific, River Edge, NJ, pp 3–12

    Google Scholar 

  • Weppner W (2003) Engineering of solid state ionic devices. Ionics 9:444–464

    Article  CAS  Google Scholar 

  • West AR (1984) Solid state chemistry and its applications. Wiley, Chichester, Ch. 13

    Google Scholar 

  • Worrell WL, Liu QG (1984) A new sulphur dioxide sensor using a novel two-phase solid-sulphate electrolyte. J Electroanal Chem 168:355–362

    Article  CAS  Google Scholar 

  • Yamazoe N, Miura N (1990) Solid-state electrochemical oxygen sensors for operation at room temperature. Trends Anal Chem 9(5):170–175

    Article  CAS  Google Scholar 

  • Yamazoe N, Miura N (1992) New approaches in the design of gas sensors. In: Sberverglieri G (ed) Gas sensors: principles, operation, and development. Springer, Berlin, pp 1–42

    Chapter  Google Scholar 

  • Yamazoe N, Miura N (1998) Potentiometric gas sensors for oxidic gases. J Electroceram 2:243–255

    Article  CAS  Google Scholar 

  • Yamazoe N, Hisamoto J, Miura N, Kuwata S (1987) Potentiometric solid-state oxygen sensor using lanthanum fluoride operative at room temperature. Sens Actuators 12:415–423

    Article  CAS  Google Scholar 

  • Yao S, Shimizu Y, Miura N, Yamazoe N (1990) Solid electrolyte CO2 sensor using binary carbonate electrode. Chem Lett 1990:2033–2036

    Article  Google Scholar 

  • Yao S, Hosohara S, Shimizu Y, Miura N, Futata H, Yamazoe N (1991) Solid electrolyte CO2 sensor using NASICON and Li-based binary carbonate electrode. Chem Lett 1991:2069–2072

    Article  Google Scholar 

  • Yao S, Shimizu Y, Miura N, Yamazoe N (1993) Development of high-performance solid-electrolyte sensors for NO and NO2. Sens Actuators B 13:387–390

    Article  Google Scholar 

  • Zosel J, Schiffel G, Gerlach F, Ahlborn K, Sasum U, Vashook V, Guth U (2006) Electrode materials for potentiometric hydrogen sensors. Solid State Ionics 177:2301–2304

    Article  CAS  Google Scholar 

  • Zosel J, Oelßner W, Decker M, Gerlach G, Guth U (2011) The measurement of dissolved and gaseous carbon dioxide concentration. Meas Sci Technol 22:072001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Solid Electrolytes for Detecting Specific Gases. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_6

Download citation

Publish with us

Policies and ethics