Skip to main content

Metal Oxides

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 5341 Accesses

Abstract

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different principles. In particular, in the present chapter one can find descriptions of solid electrolyte hydrogen and oxygen electrochemical sensors, metal oxide heated chemirestors, p–n homojunction and heterostructure-based sensors, room temperature gas sensors, pyroelectric-based gas sensors, thermoelectric gas sensors, optical gas sensors based on chemochromic materials, etc. Criteria for metal oxides application in these devices are given. A comparative analysis of metal oxides is presented, and advantages and disadvantages are discussed. The chapter includes 37 figures, 22 tables, and 399 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi G, Imanaka N (1995) Chemical sensors. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 21. Elsevier Science, Amsterdam, pp 179–262

    Google Scholar 

  • Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuators B 171–172:25–42

    Google Scholar 

  • Ahlers S, Muller G, Doll T (2005) A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sens Actuators B 107:587–599

    CAS  Google Scholar 

  • Ahlgren EO, Poulsen FW (1995) Thermoelectric power of stabilized zirconia. Solid State Ionics 82:193–201

    CAS  Google Scholar 

  • Ahmad A, Walsh J, Wheat TA (2003) Effect of processing on the properties of tin oxide-based thick-film gas sensors. Sens Actuators B 93:538–545

    CAS  Google Scholar 

  • Aifan C, Xiaodong H, Zhangfa T, Shouli B, Ruixian L, Chiun LC (2006) Preparation, characterization and gas-sensing properties of SnO2–In2O3 nanocomposite oxides. Sens Actuators B 115:316–321

    Google Scholar 

  • Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ion 145:3–16

    CAS  Google Scholar 

  • Alberti G, Carbone A, Palombari R (2001) Solid state potentiometric sensor at medium temperatures (150–300 °C) for detecting oxidable gaseous species in air. Sens Actuators B 75:125–128

    CAS  Google Scholar 

  • Ando M, Kobayashi T, Haruta M (1996) Humidity-sensitive optical absorption of Co3O4 film. Sens Actuators B 32:157–160

    CAS  Google Scholar 

  • Ando M, Kobayashi T, Iijima S, Haruta M (1997) Optical recognition of CO and H2 by use of gas-sensitive Au–Co3O4 composite films. J Mater Chem 7(9):1779–1783

    CAS  Google Scholar 

  • Ando M, Sato Y, Tamura S, Kobayashi T (1999) Optical humidity sensitivity of plasma-oxidized nickel oxide films. Solid State Ionics 121:307–311

    CAS  Google Scholar 

  • Ando M, Chabicovsky R, Haruta M (2001) Optical hydrogen sensitivity of noble metal–tungsten oxide composite films prepared by sputtering deposition. Sens Actuators B 76:13–17

    CAS  Google Scholar 

  • Anothainart K, Burgmair A, Karthigeyan A, Zimmer M, Eisele I (2003) Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sens Actuators B 93:580–584

    CAS  Google Scholar 

  • Amar IA, Lan R, Petit CTG, Tao S (2011) Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15:1845–1860

    CAS  Google Scholar 

  • Arafat MM, Dinan B, Akbar SA, Haseeb ASMA (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12:7207–7258

    CAS  Google Scholar 

  • Aroutiounian V (2007) Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int J Hydrogen Energy 32:1145–1158

    CAS  Google Scholar 

  • Aygun S, Cann D (2005) Hydrogen sensitivity of doped CuO/ZnO heterocontact. Sens Actuators B 106:837–842

    Google Scholar 

  • Badlani M, Wachs IE (2001) Methanol: a “smart” chemical probe molecule. Catal Lett 75(3–4):137–149

    CAS  Google Scholar 

  • Baek K-K, Tuller HL (1993) Electronic characterization of ZnO/CuO heterojunctions. Sens Actuators B 13:238–240

    CAS  Google Scholar 

  • Bahu M, Kumar K, Bahu T (2012) CuO-ZnO semiconductor gas sensors for ammonia at room temperatures. J Electron Devices 14:1137–1141

    Google Scholar 

  • Bangale SV, Patil DR, Bamane SR (2011) Nanostructured spinel ZnFe2O4 for the detection of chlorine gas. Sens Transducers J 134(11):107–119

    CAS  Google Scholar 

  • Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167

    CAS  Google Scholar 

  • Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors. A status report. Fresen J Anal Chem 365:287–304

    CAS  Google Scholar 

  • Basu S, Hazra SK (2005) ZnO p-n homojunctions for hydrogen gas sensors at elevated temperature. Asian J Phys 14:65–69

    CAS  Google Scholar 

  • Basu S, Saha M, Chatterjee S, Mistry KK, Bandyopadhay S, Sengupta K (2001) Porous ceramic sensor for measurement of gas moisture in the ppm range. Mater Lett 49:29–33

    CAS  Google Scholar 

  • Batzill M (2006) Surface science studies of gas sensing materials: SnO2. Sensors 6:1345–1376

    CAS  Google Scholar 

  • Bechinger C, Oefinger G, Herminghaus S, Leidered P (1993) On the fundamental role of oxygen for the photochromic effect in WO3. J Appl Phys 74:4527–4533

    CAS  Google Scholar 

  • Benson DK, Tracy CE, Lee S-H, Hishmeh GA, Haberman DP, Ciszek PA (1998) Low-cost, fiber-optic hydrogen gas detector using guided-wave, surface-plasmon resonance in chemochromic thin films. NREL/CP-590-25611, pp 1–18

    Google Scholar 

  • Berger O, Hoffmann T, Fischer W-J, Melev V (2004) Tungsten-oxide thin films as novel materials with high sensitivity and selectivity to NO2, O3, and H2S. Part II: application as gas sensors. J Mater Sci Mater Electron 15:483–493

    CAS  Google Scholar 

  • Biao W, Dong ZY, Ming HL, Sheng CJ, Li GF, Yun L, Jun WL (2010) Improved and excellent CO sensing properties of Cu-doped TiO2 nanofibers. Chin Sci Bull 55:228–232

    Google Scholar 

  • Blase R, Härdtl KH, Schönauer U (1997) Oxygen sensor based on non-doped cuprate. US Patent 5,792,666

    Google Scholar 

  • Bonanos N (2001) Oxide-based protonic conductors: point defects and transport properties. Solid State Ionics 145:265–274

    CAS  Google Scholar 

  • Boozer C (2003) Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly. Sens Actuators B 90:22–30

    CAS  Google Scholar 

  • Brinzari V, Korotcenkov G, Golovanov V (2001) Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities for control. Thin Solid Films 391(1/2):167–175

    CAS  Google Scholar 

  • Brinzari V, Ivanov M, Cho BK, Kamei M, Korotcenkov G (2010) Photoconductivity in In2O3 nanoscale thin films: interrelation with chemisorbed-type conductometric response towards oxygen. Sens Actuators B 148:427–438

    CAS  Google Scholar 

  • Brynn DH, Tseung CC (1979) The reduction of sulphur dioxide by carbon monoxide on La0.5Sr0.5CoO3 catalyst. J Chem Technol Biotechnol 29:713–718

    Google Scholar 

  • Brynzari V, Korotchenkov G, Dmitriev S (1999) Simulation of thin film gas sensor kinetics. Sens Actuators B 61:143–153

    CAS  Google Scholar 

  • Brynzari V, Korotchenkov G, Dmitriev S (2000) Theoretical study of semiconductor thin film gas sensitivity: attempt to consistent approach. J Electron Technol 33:225–235

    CAS  Google Scholar 

  • Burgmair M, Zimmer M, Eisele I (2003) Humidity and temperature compensation in work function gas sensor FETs. Sens Actuators B 93:271–275

    CAS  Google Scholar 

  • Calatayud M, Markovits A, Menetrey M, Mguig B, Minot C (2003) Adsorption on perfect and reduced surfaces of metal oxides. Catal Today 85:125–143

    CAS  Google Scholar 

  • Cavanagh LM, Smith P, Binionsa R (2012) BaSnO3 thick film as a carbon dioxide sensor. J Electrochem Soc 159(3):J67–J71

    CAS  Google Scholar 

  • Chao Y, Buttner WJ, Yao S, Stetter JR (2005) Amperometric sensor for selective and stable hydrogen measurement. Sens Actuators B 106:784–790

    CAS  Google Scholar 

  • Chapelle A, Oudrhiri-Hassani F, Presmanes L, Barnabé A, Tailhades P (2010) CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film. Appl Surf Sci 256(14):4715–4719

    CAS  Google Scholar 

  • Chiba A (1992) Development of the TGS gas sensor. In: Yamauchi S (ed) Chemical sensor technology, vol 4. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  • Choi SW, Park JY, Kim SS (2009) Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology 20:465603

    Google Scholar 

  • Choi J-K, Hwang I-S, Kim S-J, Park J-S, Park S-S, Jeong U, Kang YC, Lee J-H (2010) Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens Actuators B 150:191–199

    CAS  Google Scholar 

  • Chung W-Y, Oh S-J (2006) Remote monitoring system with wireless sensors module for room environment. Sens Actuators B 113:64–70

    CAS  Google Scholar 

  • Collado JA, Aranda MAG, Cabeza A, Olivera-Pastor P, Bruque S (2002) Synthesis, structures, and thermal expansion of the La2W2-xMoxO9 series. J Solid State Chem 167:80–85

    CAS  Google Scholar 

  • Comini E, Cristalli A, Faglia G, Sberveglieri G (2000) Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sens Actuators B 65:260–263

    CAS  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G (2001) UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sens Actuators B 78:73–77

    CAS  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G (2009) Electrical-based gas sensing. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York, pp 47–107

    Google Scholar 

  • D’Amico A, Zemel JN (1985) Pyroelectric enthalpimetric detection. J Appl Phys 57:2640–2643

    Google Scholar 

  • Dakin J, Culshaw B (eds) (1988) Optical fiber sensors: principles and components, vol 1. Artech House, Boston, MA

    Google Scholar 

  • Dandeneau CS, Jeon Y-H, Shelton CT, Plant TK, Cann DP, Gibbons BJ (2009) Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films 517:4448–4454

    CAS  Google Scholar 

  • Das S, Chakraborty S, Parkash O, Kumarb D, Bandyopadhyay S, Samudrala SK, Sena A, Maiti HS (2008) Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 75:385–389

    CAS  Google Scholar 

  • Dawson DH, Henshaw GS, Williams DE (1995) Description and characterization of hydrogen sulfide gas sensor based on Cr2-yTiO3+x. Sens Actuators B 26–27:76–80

    Google Scholar 

  • Dayan NJ, Sainkar SR, Karekar RN, Aiyer RC (1998) Formulation and characterization of ZnO:Sb thick-film gas sensors. Thin Solid Films 325:254–258

    CAS  Google Scholar 

  • De Souza Brito GE, Santilli CV, Pulcenelli SH (1995) Evolution of the fractal structural during sintering of SnO2 compacted sol–gel powders. Colloids Surf A 97:217–225

    Google Scholar 

  • Deb SK, Witzke H (1975) The solid state electrochromic phenomenon and its applications to display devices. Proc IEEE Int Electron Devices Mtng 21:393–397

    Google Scholar 

  • Delta Corporation (n.d.) Application note No. 107, Risks in using zirconium oxide analyzers for trace oxygen measurements. http://www.delta-f.com/AppNotes/apnote7.htm

  • Dickey EC, Varghese OK, Ong KG, Gong D, Paulose M, Grimes CA (2002) Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films. Sensors 2:91–110

    CAS  Google Scholar 

  • Djerdj I, Haensch A, Koziej D, Pokhrel S, Barsan N, Weimar U, Niederberger M (2009) Neodymium dioxide carbonate as a sensing layer for chemoresistive CO2 sensing. Chem Mater 21:5375–5381

    CAS  Google Scholar 

  • Doll T, Eisele I (1998) Gas detection with work function sensors. In: Proceedings of SPIE conference on chemical microsensors and applications, vol 3539, Nov 1998, Boston, MA, pp 96–105

    Google Scholar 

  • Dong K-Y, Choi J-K, Hwang I-S, Lee J-W, Kang BH, Ham D-J, Lee J-H, Ju B-K (2011) Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater. Sens Actuators B 157:154–161

    CAS  Google Scholar 

  • Dostálek J, Tyroký J, Homola J, Brynda E, Skalský M, Nekvindová P, Spirková J, Skvor J, Schröfel J (2001) Surface plasmon resonance biosensor based on integrated optical waveguide. Sens Actuators B 76:8–12

    Google Scholar 

  • Du Y, Nowick AS (1996) Galvanic cell measurements on a fast proton conducting complex perovskite electrolyte. Solid State Ionics 91(1–2):85–91

    CAS  Google Scholar 

  • Elumalai P, Miura N (2005) Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature. Solid State Ion 31–34:2517–2522

    Google Scholar 

  • Elumalai P, Plashnitsa VV, Fujio Y, Miura A (2008) Stabilized zirconia-based sensor attached with NiO/Au sensing electrode aiming for highly selective detection of ammonia in automobile exhausts. Electrochem Solid State Lett 11:J79–J81

    CAS  Google Scholar 

  • Epifani M, Comini E, Arbiol J, Dıaz R, Sergent N, Pagnier T, Siciliano P, Faglia G, Morante JR (2008) Chemical synthesis of In2O3 nanocrystals and their application in highly performing ozone-sensing devices. Sens Actuators B 130:483–487

    CAS  Google Scholar 

  • Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors – a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188

    CAS  Google Scholar 

  • Espinosa EH, Ionescu R, Chambon B, Bedis G, Sotter E, Bittencourt C, Felten A, Pireaux J-J, Correig X, Llobet E (2007) Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing. Sens Actuators B 127:137–142

    CAS  Google Scholar 

  • Etsell TH, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev 70:339–376

    CAS  Google Scholar 

  • Fardindoost S, Zad AI, Rahimi F, Ghasempour R (2010) Pd doped WO3 films prepared by sol–gel process for hydrogen sensing. Int J Hydrogen Energy 35:854–860

    CAS  Google Scholar 

  • Fergus JW (2007a) Perovskite oxides for semiconductor-based gas sensors. Sens Actuators B 123:1169–1179

    CAS  Google Scholar 

  • Fergus JW (2007b) Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases. Sens Actuators B 122:683–693

    CAS  Google Scholar 

  • Fergus JW (2007c) Materials for high temperature electrochemical NO x gas sensors. Sens Actuators B 121:652–663

    Google Scholar 

  • Fergus JW (2008) A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors. Sens Actuators B 134:1034–1041

    CAS  Google Scholar 

  • Ferro R, Rodriguez JA, Jimenez I, Cirera A, Cerda J, Morante JR (2005) Gas-sensing properties of sprayed films of (CdO)x(ZnO)1-x mixed oxide. IEEE Sens J 5:48–52

    CAS  Google Scholar 

  • Fields LL, Zheng JP, Cheng Y, Xiong P (2006) Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Appl Phys Lett 88:263102

    Google Scholar 

  • Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semiconductor gas sensors in environmental monitoring. Sensors 10:5469–5502

    CAS  Google Scholar 

  • Fleischer M, Meixner H (1997) Fast gas sensors based on metal oxides which are stable at high temperatures. Sens Actuators B 43:1–10

    CAS  Google Scholar 

  • Fleischer M, Meixner H (1998) Selectivity in high-temperature operated semiconductor gas-sensors. Sens Actuators B 52:179–187

    CAS  Google Scholar 

  • Fu T (2007) Sensing properties and mechanism of gas sensor for H2S and NO2 based on [Cu5(bipyO2)6Cl8]Cl2. Sens Actuators B 123:1113–1119

    CAS  Google Scholar 

  • Fukatsu N, Kurita N, Koide K, Ohashi T (1998) Hydrogen sensor for molten metals usable up to 1500 K. Solid State Ionics 113–115:219–227

    Google Scholar 

  • Gadkari AB, Shinde TJ, Vasambekar PN (2011) Ferrite gas sensors. IEEE Sens J 11(4):849–861

    CAS  Google Scholar 

  • Garagounis I, Kyriakou V, Anagnostou C, Bourganis V, Papachristou I, Stoukides M (2011) Solid electrolytes: applications in heterogeneous catalysis and chemical cogeneration. Ind Eng Chem Res 50:431–472

    CAS  Google Scholar 

  • Gardner JM, Bartlett PN (eds) (1992) Sensors and sensory systems for an electronic nose. Kluwer Academic, Dordrecht

    Google Scholar 

  • Gardner JM, Bartlett PN (1999) Electronic noses: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  • Garzon FH, Mukundan R, Brosha EL (2000) Solid-state mixed potential gas sensors: theory, experiments and challenges. Solid State Ionics 136–137:633–638

    Google Scholar 

  • Gas’kov AM, Rumyantseva MN (2001) Nature of gas sensitivity in nanocrystalline metal oxides. Russ J Appl Chem 74(3):440–444

    Google Scholar 

  • Gas’kov A, Rumyantseva M (2009) Metal oxide nanocomposites: synthesis and characterization in relation with gas sensing phenomena. In: Baraton MI (ed) Sensors for environment, health and security. Springer Science + Business Media B.V., Dordrecht, pp 3–29

    Google Scholar 

  • Gawas UB, Verenkar VMS, Patil DR (2011) Nanostructured ferrite based electronic nose sensitive to ammonia at room temperature. Sens Transducers J 134(11):45–55

    CAS  Google Scholar 

  • Ghimbeu CM, Lumbreras M, Schoonman J, Siadat M (2009) Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide. Sensors 9:9122–9132

    CAS  Google Scholar 

  • Gillet M, Aguir K, Bendahan M, Mennini P (2005) Grain size effect in sputtered tungsten trioxide thin films on the sensitivity to ozone. Thin Solid Films 484:358–363

    CAS  Google Scholar 

  • Glass RS, Milliken J, Howden K, Sullivan R (eds) (2000) Sensor needs and requirements for proton-exchange membrane fuel cell systems and direct-injection engines. Lawrence Livermore National Laboratory, UCRL-ID-137767, Livermore, CA, p 11

    Google Scholar 

  • Golovanov V, Maki-Jaskari MA, Rantala TT, Korotcenkov G, Brinzari V, Cornet A, Morante J (2005) Experimental and theoretical studies of the indium oxide-based gas sensors deposited by spray pyrolysis. Sens Actuators B 106:563–571

    CAS  Google Scholar 

  • Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, New York

    Google Scholar 

  • Gui Y, Li S, Xu J, Li C (2008) Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature. Microelectron J 39:1120–1125

    CAS  Google Scholar 

  • Gupta SK, Joshi A, Kaur M (2010) Development of gas sensors using ZnO nanostructures. J Chem Sci 122(1):57–62

    CAS  Google Scholar 

  • Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem 7:2041–2052

    CAS  Google Scholar 

  • Gurlo A, Ivanovskaya M, Barsan N, Schweizer-Berberich M, Weimar U, Gopel W, Dieguez A (1997) Grain size control in nanocrystalline In2O3 semiconductor sensors. Sens Actuators B 44:327–333

    Google Scholar 

  • Haile SM (2003) Fuel cell materials and components. Acta Mater 51:5981–6000

    CAS  Google Scholar 

  • Hashimoto A, Hibino T, Mori K, Sano M (2001) High-temperature hydrocarbon sensors based on a stabilized zirconia electrolyte and proton conductor-containing platinum electrode. Sens Actuators B 81:55–63

    CAS  Google Scholar 

  • Haugen JE, Kvaal K (1998) Electronic nose and artificial neural network. Meat Sci 49:S273–S286

    Google Scholar 

  • Hazra SK, Basu S (2006) Hydrogen sensitivity of ZnO p-n homojunctions. Sens Actuators B 117:177–182

    CAS  Google Scholar 

  • Helwig A, Muller G, Eickhoff M, Sberveglieri G (2007) Dissociative gas sensing at metal oxide surfaces. IEEE Sens J 7:1675–1679

    CAS  Google Scholar 

  • Helwig A, Muller G, Sberveglieri G, Eickhoff M (2009) On the low-temperature response of semiconductor gas sensors. J Sens 2009:620720

    Google Scholar 

  • Hemmati S, Firooz AA, Khodadadi AA, Mortazavi Y (2011) Nanostructured SnO2–ZnO sensors: highly sensitive and selective to ethanol. Sens Actuators B 160:1298–1303

    CAS  Google Scholar 

  • Herran J, Mandayo GG, Castano E (2008) Solid state gas sensor for fast carbon dioxide detection. Sens Actuators B 129:705–709

    CAS  Google Scholar 

  • Herrán J, Ga MG, Castaño E (2009) Semiconducting BaTiO3-CuO mixed oxide thin films for CO2 detection. Thin Solid Films 517:6192–6197

    Google Scholar 

  • Herrán J, Fernández-González O, Castro-Hurtado I, Romero T, Ga Mandayo G, Castano E (2010) Photoactivated solid-state gas sensor for carbon dioxide detection at room temperature. Sens Actuators B 149:368–372

    Google Scholar 

  • Hibino T, Kuwahara Y, Wang S, Kakimoto S, Sano M (1998) Nonideal electromotive force of zirconia sensors for unsaturated hydrocarbon gases. Electrochem Soc Lett 1(4):197–199

    CAS  Google Scholar 

  • Hibino T, Kakimoto S, Sano M (1999) Non-Nernstian behavior at modified Au electrodes for hydrocarbon gas sensing. J Electrochem Soc 146:3361–3366

    CAS  Google Scholar 

  • Hieu NV, Thuy LTB, Chien ND (2008) Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens Actuators B 129:888–895

    Google Scholar 

  • Hill DC, Tuller HL (1991) Ceramic sensors: theory and practice. In: Buchanan RC (ed) Ceramic materials for electronics, 2nd edn. Marcel Dekker, New York, pp 249–347

    Google Scholar 

  • Hoefer U, Frank J, Fleischer M (2001) High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison. Sens Actuators B 78:6–11

    CAS  Google Scholar 

  • Hong DU, Han C-H, Park SH, Kim I-J, Gwak J, Han S-D, Kim HJ (2009) Recovery properties of hydrogen gas sensor with Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from catalytic poisoning of H2S. Curr Appl Phys 9:172–178

    Google Scholar 

  • Horiuchi T, Hidaka H, Fukui T, Kubo Y, Horio M, Suzuki K, Mori T (1998) Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures. Appl Catal A Gen 167:195–202

    CAS  Google Scholar 

  • Houser EJ, Mlsna TE, Nguyen VK, Chung R, Mowery EL, McGill RA (2001) Rational materials design of sorbent coatings for explosives: applications with chemical sensors. Talanta 54:469–485

    CAS  Google Scholar 

  • Hsieh HY, Spetz A, Zemel JN (1991) Wide range pyroelectric anemometers for gas flow measurements. In: Digest of technical papers of TRANSDUCERS ’91. International conference on solid-state sensors and actuators, 24–27 June 1991, San Francisco, CA, pp 38–40

    Google Scholar 

  • Hu Y, Zhou X, Han Q, Cao Q, Huang Y (2003) Sensing properties of CuO-ZnO heterojunction gas sensors. Mater Sci Eng B 99(1–3):41–43

    Google Scholar 

  • Hyodo T, Abe S, Shimuzu Y, Egashira M (2003) Gas sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sens Actuators B 93:590–600

    CAS  Google Scholar 

  • Iftimie N, Rezlescu E, Popa PD, Rezlescu N (2006) Gas sensitivity of nanocrystalline nickel ferrite. J Optoelectron Adv Mater 8(3):1016–1018

    CAS  Google Scholar 

  • Imanaka N, Adachi G (1997) Rare earth contribution in solid state electrolytes, especially in the chemical sensor field. J Alloys Compd 250:492–500

    CAS  Google Scholar 

  • Ionescu R (1998) Combined Seebeck and resistive SnO2 gas sensors, a new selective device. Sens Actuators B 48:392–394

    CAS  Google Scholar 

  • Ishihara T (ed) (2009) Perovskite oxide for solid oxide fuel cells. Springer, Dordrecht

    Google Scholar 

  • Ishihara T, Matsubara S (1998) Capacitive type gas sensors. J Electroceram 2(4):215–228

    CAS  Google Scholar 

  • Ishihara T, Kometani K, Mizuhara Y, Takita Y (1991a) Mixed oxide capacitor of CuO-BaSnO3 as a sensor for CO2 detection over a wide range of concentration. Chem Lett 20(10):1711–1714

    Google Scholar 

  • Ishihara T, Kometani K, Hashida M, Takita Y (1991b) Application of mixed oxide capacitor to the selective carbon dioxide sensor. I. Measurement of carbon dioxide sensing characteristics. J Electrochem Soc 138:173–176

    CAS  Google Scholar 

  • Ishihara T, Kometani K, Mizuhara Y, Takita Y (1992) Application of a mixed oxide capacitor to the selective carbon dioxide sensor. II. CO2 sensing characteristics of a CuO-based oxide capacitor. J Electrochem Soc 139:2881–2885

    CAS  Google Scholar 

  • Ishihara T, Sato S, Takita Y (1996) Sensitive detection of nitrogen oxides based upon capacitance changes in binary oxide mixture. Sens Actuators B 30:43–45

    CAS  Google Scholar 

  • Ito K, Kubo T, Yamauchi Y (1987) Gas sensor. US Patent 4,661,320

    Google Scholar 

  • Ivanovskaya M, Kotsikau D, Faglia G, Nelli P (2003) Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sens Actuators B 96:498–503

    CAS  Google Scholar 

  • Iwahara H, Yajima T, Hibino T, Ozaki K (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61:65–69

    CAS  Google Scholar 

  • Iwahara H, Asakura Y, Katahira K, Tanaka M (2004) Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168:299–310

    CAS  Google Scholar 

  • Jacobs A, Vangrunderbeek J, Beckers H, De Schumr F, Luyten J, Van Landschoot R, Schoonman J (1993) Hydrogen measuring probe for coal gasification processes. Fuel Process Technol 36:251–258

    CAS  Google Scholar 

  • Jamnik J, Kamp B, Merkle R, Maier J (2002) Space charge influenced oxygen incorporation in oxides: in how far does it contribute to the drift of Taguchi sensors? Solid State Ionics 150:157–166

    CAS  Google Scholar 

  • Jianping L, Yue W, Xiaoguang G, Qing M, Li W, Jinghong H (2000) H2S sensing properties of the SnO2-based thin films. Sens Actuators B 65:111–113

    CAS  Google Scholar 

  • Jin CJ, Yamazaki T, Shirai Y, Yoshizawa T, Kikuta T, Nakatani N, Takeda H (2005) Dependence of NO2 gas sensitivity of WO3 sputtered films on film density. Thin Solid Films 474:255–260

    CAS  Google Scholar 

  • Jing Z, Wang Y, Wu S (2006) Preparation and gas sensing properties of pure and doped γ-Fe2O3 by an anhydrous solvent method. Sens Actuators B 113:177–181

    CAS  Google Scholar 

  • Jones TA, Firth JG, Mann B (1985) The effect of oxygen on the electrical conductivity of some metal oxides in inert and reducing atmospheres at high temperature. Sens Actuators 8:281–306

    CAS  Google Scholar 

  • Jung SJ, Yanagida H (1996) The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas. Sens Actuators B 37:55–60

    CAS  Google Scholar 

  • Kanazawa E, Sakai G, Shimanoe K, Kanmura Y, Teraoka Y, Miura N, Yamazoe N (2001) Metal oxide semiconductor N2O sensor for medical use. Sens Actuators B 77:72–77

    CAS  Google Scholar 

  • Kanda K, Maekawa T (2005) Development of a WO3 thick-film-based sensors for the detection of VOC. Sens Actuators B 108:97–101

    CAS  Google Scholar 

  • Katti VR, Debnath AK, Muthea KP, Kaur M, Dua AK, Gadkari SC, Gupta SK, Sahni VC (2003) Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sens Actuators B 96:245–252

    CAS  Google Scholar 

  • Kaur M, Jain N, Sharma K, Bhattacharya S, Mainak Roy M, Tyagi AK, Gupta SK, Yakhmia JV (2008) Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sens Actuators B 133:456–461

    CAS  Google Scholar 

  • Kharton V, Naumovich EN, Yaremchenko AA, Marques FMB (2001) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. IV. Bismuth oxide-based ceramics. J Solid State Electrochem 5:160–187

    CAS  Google Scholar 

  • Kharton V, Marques F, Atkinson A (2004) Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174:135–149

    CAS  Google Scholar 

  • Kim DH, Yoon JY, Park HC, Kim KH (2000) CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide. Sens Actuators B 62:61–66

    CAS  Google Scholar 

  • Kim YS, Ha S-C, Kim K, Yang H, Choi S-Y, Kim YT (2005) Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl Phys Lett 86:213105

    Google Scholar 

  • Kiriakidis G, Bender M, Katsarakis N, Gagaoudakis E, Hourdakis E, Doulofakis E, Cimalla V (2001) Ozone sensing properties of polycrystalline indium oxide films at room temperature. Physica Status Solidi A Appl Res 185(1):27–32

    Google Scholar 

  • Knauth P, Tuller HL (1999) Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J Appl Phys 85:897–902

    CAS  Google Scholar 

  • Kobayashi T, Haruta M, Sano H, Delmon B (1990) Optical detection of CO in air through catalytic chromism of metal-oxide thin films. In: Proceedings of the third international meeting on chemical sensors, Cleveland, pp 318–321

    Google Scholar 

  • Kofstad P (1972) Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides. Wiley, New York

    Google Scholar 

  • Kohl D (1989) Surface processes in the detection of reducing gases with SnO2-based devices. Sens Actuators 18:71–113

    CAS  Google Scholar 

  • Kong X, Li Y (2005) High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens Actuators B 105:449–453

    CAS  Google Scholar 

  • Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxides: state of the art and approaches. Sens Actuators B 107:209–232

    CAS  Google Scholar 

  • Korotcenkov G (2007a) Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B 139:1–23

    CAS  Google Scholar 

  • Korotcenkov G (2007b) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678

    CAS  Google Scholar 

  • Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39

    Google Scholar 

  • Korotcenkov G (ed) (2010) Chemical sensors: fundamentals of sensing materials, vols 1, 2. Momentum, New York

    Google Scholar 

  • Korotcenkov G (ed) (2011a) Chemical sensors: fundamentals of sensing materials, vol 3. Momentum, New York

    Google Scholar 

  • Korotcenkov G (ed) (2011b) Chemical sensors: comprehensive sensor technologies, vols 4–6. Momentum, New York

    Google Scholar 

  • Korotcenkov G, Han SD (2009) (Cu, Fe, Co and Ni)-doped SnO2 films deposited by spray pyrolysis: doping influence on thermal stability of SnO2 film structure. Mater Chem Phys 113:756–763

    CAS  Google Scholar 

  • Korotcenkov G, Stetter JR (2008) Comparative study of SnO2- and In2O3-based ozone sensors. ECS Trans 6(20):29–41

    CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, Cerneavschi A, Ivanov M, Golovanov V, Cornet A, Morante J, Cabot A, Arbiol J (2004a) The influence of film structure on In2O3 gas response. Thin Solid Films 460:308–316

    Google Scholar 

  • Korotcenkov G, Brinzari V, Cerneavschi A, Ivanov M, Cornet A, Morante J, Cabot A, Arbiol J (2004b) In2O3 films deposited by spray pyrolysis: gas response to reducing (CO, H2) gases. Sens Actuators B 98:236–243

    Google Scholar 

  • Korotcenkov G, Cerneavschi A, Brinzari V, Vasiliev A, Cornet A, Morante J, Cabot A, Arbiol J (2004c) In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sens Actuators B 99:304–310

    Google Scholar 

  • Korotcenkov G, Golovanov V, Cornet A, Brinzari V, Morante J, Ivanov M (2005a) Distinguishing feature of metal oxide films’ structural engineering for gas sensor application. J Phys Conf Ser (IOP) 15:256–261

    Google Scholar 

  • Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cirera A, Cornet A, Morante J (2005b) Structural stability of In2O3 films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479:38–51

    CAS  Google Scholar 

  • Korotcenkov G, Blinov I, Stetter JR (2007a) Kinetics of indium oxide-based thin film gas sensor response: the role of “redox” and adsorption/desorption processes in gas sensing effects. Thin Solid Films 515:3987–3996

    CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V (2007b) The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B 128:51–63

    CAS  Google Scholar 

  • Korotcenkov G, Blinov I, Ivanov M, Stetter JR (2007c) Ozone sensors on the base of SnO2 films deposited by spray pyrolysis. Sens Actuators B 120:679–686

    CAS  Google Scholar 

  • Korotcenkov G, Han SD, Cho BK, Brinzari V (2009a) Grain size effects in sensor response of nanostructured SnO2- and In2O3-based conductometric gas sensor. Crit Rev Solid State Mater Sci 34:1–17

    CAS  Google Scholar 

  • Korotcenkov G, Cho BK, Gulina L, Tolstoy V (2009b) Ozone sensors based on SnO2 films modified by SnO2–Au nanocomposites synthesized by the SILD method. Sens Actuators B 138:512–517

    CAS  Google Scholar 

  • Korotcenkov G, Han SD, Stetter JR (2009c) Review of electrochemical hydrogen sensors. Chem Rev 109:1402–1433

    Google Scholar 

  • Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359

    CAS  Google Scholar 

  • Krilov OV, Kisilev VF (1981) Adsorption and catalysis on the transition metals and their oxides. Chemistry, Moscow

    Google Scholar 

  • Kröger FA, Vink HJ (1956) Relations between concentrations of imperfections in crystalline solids. In: Seitz F, Turnbull D (eds) Solid state physics, vol 3. Academic, New York, pp 307–435

    Google Scholar 

  • Kulkarni D, Wachs IE (2002) Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies. Appl Catal A 237:121–137

    CAS  Google Scholar 

  • Kulwicki BM (1991) Humidity sensors. J Am Ceram Soc 74:697–708

    CAS  Google Scholar 

  • Kumar RV, Iwahara H (2000) Solid electrolytes. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 28. Elsevier Science, Amsterdam, pp 131–185

    Google Scholar 

  • Kwon S, Cann DP (2005) Capacitive response of doped CuO/ZnO heterocontacts to hydrogen. Sens Lett 3(3):258–262

    CAS  Google Scholar 

  • Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligantet Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404:856–858

    CAS  Google Scholar 

  • Lampe U, Gerblinger J, Meixner H (1992) Comparison of transient response of exhaust-gas sensors based on thin films of selected metal oxides. Sens Actuators B 7:787–791

    CAS  Google Scholar 

  • Lampe U, Gerblinger J, Meixner H (1995a) Carbon-monoxide sensors based on thin films of BaSnO3. Sens Actuators B 24–25:657–660

    Google Scholar 

  • Lampe U, Gerblinger J, Meixner H (1995b) Nitrogen oxide sensors based on thin films of BaSnO3. Sens Actuators B 26–27:97–98

    Google Scholar 

  • Lample U, Fleischer M, Reitmeier N, Meixner H, McMonagle JB, Marsh A (1996) New metal oxide sensors: materials and properties. In: Sensors update, Chap 1, vol 2. Wiley, New York, pp 1–36

    Google Scholar 

  • Lecomte J, Loup JP, Bosser G, Hervieu M, Raveau B (1984) Defect structure and electrical conductivity of niobates with related perovskite-type structures. Solid State Ionics 12:113–118

    CAS  Google Scholar 

  • Lee GG, Kang S-JK (2005) Formation of large pores and their effect on electrical properties of SnO2 gas sensors. Sens Actuators B 107:392–396

    CAS  Google Scholar 

  • Lee M-S, Meyer J-U (2000) A new process for fabricating CO2-sensing layers based on BaTiO3 and additives. Sens Actuators B 68:293–299

    CAS  Google Scholar 

  • Li JG, Kawi S (1998) Synthesis, characterization and sensing application of novel semiconductor oxides. Talanta 45:759–766

    CAS  Google Scholar 

  • Li GJ, Zhang XH, Kawi S (1999) Relationships between sensitivity, catalytic activity and surface areas of SnO2 gas sensors. Sens Actuators B 60:64–70

    CAS  Google Scholar 

  • Liang KC, Nowick AS (1993) High-temperature protonic conduction in mixed perovskite ceramics. Solid State Ionics 61:77–81

    CAS  Google Scholar 

  • Liang KC, Du Y, Nowick AS (1994) Fast high-temperature proton transport in nonstoichiometric mixed perovskites. Solid State Ionics 69:117–120

    CAS  Google Scholar 

  • Liangyuan C, Shouli B, Guojun Z, Dianqing L, Aifan C, Liu CC (2008) Synthesis of ZnO–SnO2 nanocomposites by microemulsion and sensing properties for NO2. Sens Actuators B 134:360–366

    Google Scholar 

  • Lim SK, Hwang S-H, Chang D, Kim S (2010) Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators B 149:28–33

    CAS  Google Scholar 

  • Lin S, Li D, Wu J, Li X, Akbar SA (2011) A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens Actuators B 156:505–509

    CAS  Google Scholar 

  • Lin Q, Li Y, Yang M (2012) Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sens Actuators B 173:139–147

    Google Scholar 

  • Ling Z, Leach C, Freer R (2001) Heterojunction gas sensors for environmental NO2 and CO2 monitoring. J Eur Ceram Soc 21(10–11):1977–1980

    CAS  Google Scholar 

  • Litzelman SJ, Rothschild A, Tuller HL (2005) The electrical properties and stability of SrTi0.65Fe0.35O3−δ thin films for automotive oxygen sensor applications. Sens Actuators B 108:231–237

    CAS  Google Scholar 

  • Liu P, Lee S-H, Tracy CE, Turner JA, Pitts JR, Deb SK (2003) Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide. Solid State Ionics 165:223–228

    CAS  Google Scholar 

  • Liu RQ, Xie YH, Wang JD, Li ZJ, Wang BH (2006) Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-delta (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature. Solid State Ionics 177:73–76

    CAS  Google Scholar 

  • Logothetis EM (1980) Resistive-type exhaust gas sensors. Ceram Eng Sci Proc 2:281–301

    Google Scholar 

  • Lopez-Gandara C, Ramos FM, Cirera A (2009) YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J Sens 2009:258489

    Google Scholar 

  • Lu G, Miura N, Yamazoe N (1996a) High temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens Actuators B 35:130–135

    CAS  Google Scholar 

  • Lu G, Miura N, Yamazoe N (1996b) Mixed potential hydrogen sensor combining oxide ion conductor with oxide electrode. J Electrochem Soc 143:L154–L155

    CAS  Google Scholar 

  • Lu G, Xu J, Sun J, Yu Y, Zhang Y, Liu F (2012) UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens Actuators B 162:82–88

    CAS  Google Scholar 

  • Lupan O, Ursaki VV, Chai G, Chow L, Emelchenko GA, Tiginyanu IM, Gruzintsev AN, Redkin AN (2010) Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens Actuators B 144:56–66

    CAS  Google Scholar 

  • Luyten J, De Schutter F, Schram J, Schoonman J (1991) Chemical and electrical properties of Yb-doped strontium cerates in coal combustion atmospheres. Solid State Ionics 46:117–120

    CAS  Google Scholar 

  • Manzanares M, Prades JD, Cirera A, Andreu T, Hernández-Ramírez F, Jiménez-Rodríguez R, Romano-Rodríguez A, Morante JR (2009) Room temperature conductometric gas sensors based on metal oxide nanowires and nanocrystals. In: Proceedings of the Spanish conference on electron devices, 11–13 Feb 2009, Santiago de Compostela, Spain, pp 320–322

    Google Scholar 

  • Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science 282:98–100

    CAS  Google Scholar 

  • Marques FMB, Wirtz GP (1991) Electrical properties of ceria-doped yttria. J Am Ceram Soc 74:598–605

    CAS  Google Scholar 

  • Marques FMB, Kharton VV, Naumovich EN, Shaula AL, Kovalevsky AV, Yaremchenko AA (2006) Oxygen ion conductors for fuel cells and membranes: selected developments. Solid State Ionics 177:1697–1703

    CAS  Google Scholar 

  • Marsal A, Cornet A, Morante JR (2003a) Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor. Sens Actuators B 94:324–329

    CAS  Google Scholar 

  • Marsal A, Dezanneau G, Cornet A, Morante JR (2003b) Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor. Sens Actuators B 95:266–270

    CAS  Google Scholar 

  • Martin LP, Glass RS (2005) Hydrogen sensor based on YSZ electrolyte and tin doped indium oxide electrode. J Electrochem Soc 152:H43–H47

    CAS  Google Scholar 

  • Matko I, Gaidi M, Chenevier B, Charai A, Saikaly W, Labeau M (2002) Pt doping of SnO2 thin films. J Electrochem Soc 149:H153–H158

    CAS  Google Scholar 

  • McAleer JF, Moseley PT, Bourke P, Norris JO, Stephan R (1985) Tin dioxide gas sensors: use of the Seebeck effect. Sens Actuators 8:251–256

    Google Scholar 

  • McAleer JF, Moseley PT, Norris JO, Williams DE (1987) Tin dioxide gas sensors: I. Aspects of the surface chemistry revealed by electrical conductance variations. J Chem Soc Faraday Trans I 83:1323

    CAS  Google Scholar 

  • Meier DC, Semancik S, Button B, Strelcov E, Kolmakov A (2007a) Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl Phys Lett 91:063118

    Google Scholar 

  • Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD, Martinez CJ, Montgomery CB, Semancik S (2007b) The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens Actuators B 121:282–294

    CAS  Google Scholar 

  • Menesklou W (2011) Systematische Produktentwicklung in der Sensorik. http://www.iwe.kit.edu/plainhtml/lehre/spids/SPIDS_1.2_Sensor_Prinzipien_WS2011_12.pdf

  • Menesklou W, Schreiner H-J, Hardtl KH, Tiffee EI (1999) High temperature oxygen sensors based on doped SrTiO3. Sens Actuators B 59:184–189

    CAS  Google Scholar 

  • Mishra S, Ghanshyam C, Ram N, Bajpai RP, Bedi RK (2004) Detection mechanism of metal oxide gas sensor under UV radiation. Sens Actuators B 97:387–390

    CAS  Google Scholar 

  • Mitterdorfer A, Gauckler LJ (1999) Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation. Solid State Ionics 117:187–202

    CAS  Google Scholar 

  • Miura N, Yamazoe N (1998) High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode. Sens Actuators B 52:169–178

    CAS  Google Scholar 

  • Miura N, Harada T, Yamazoe N (1989) Sensing characteristics and working mechanism of four-probe type solid-state hydrogen sensor using proton conductor. J Electrochem Soc 136:1215–1219

    CAS  Google Scholar 

  • Miura N, Raisen T, Lu G, Yamazoe N (1998) Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes. Sens Actuators B 47:84–91

    CAS  Google Scholar 

  • Miura N, Lu G, Yamazoe N (2000) Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ionics 136–137:533–542

    Google Scholar 

  • Mizuno N, Yoshioka T, Kato K, Iwamoto M (1993) CO2-sensing characteristics of SnO2 element modified by La2O3. Sens Actuators B 13:473–476

    CAS  Google Scholar 

  • Mohajeri N, Muradov N, Bokerman G, T-Raissi A, Captain J, Peterson B, Whitten M (2009) Gas permeable chemochromic compositions for hydrogen sensing. NASA/CR – 2009–215441, pp 20–148

    Google Scholar 

  • Moos R, Gnudi A, Härdtl KH (1995) Thermopower of Sr1-xLaxTiO3 ceramics. J Appl Phys 78:5042–5047

    CAS  Google Scholar 

  • Moos R, Sahner K, Fleischer M, Guth U, Barsan N, Weimar U (2009) Solid state gas sensor research in Germany – a status report. Sensors 9:4323–4365

    CAS  Google Scholar 

  • Moos R, Izu N, Rettig F, Reiß S, Shin W, Matsubara I (2011) Resistive oxygen gas sensors for harsh environments. Sensors 11:3439–3465

    Google Scholar 

  • Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628

    CAS  Google Scholar 

  • Morrison SR (1982) Chemisorption on nonmetalic surfaces. In: Anderson JR, Boudart M (eds) Catalysis science and technology. Springer, Berlin

    Google Scholar 

  • Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11:283–287

    CAS  Google Scholar 

  • Moseley PT (1992) Materials selection for semiconductor gas sensors. Sens Actuators B 6:149–156

    CAS  Google Scholar 

  • Moseley PT, Crocker AJ (1996) Sensor materials. IOP Publishing, Bristol

    Google Scholar 

  • Moseley P, Williams DE (1989) Gas sensors based on oxides of early transition metals. Polyhedron 8:1615–1618

    CAS  Google Scholar 

  • Mosley PT, Norris J, Williams DE (eds) (1991) Techniques and mechanisms in gas sensing. Adam Hilger, New York

    Google Scholar 

  • Moulson AJ, Herbert JM (1990) Electroceramics materials, properties, applications. Chapman and Hall, London

    Google Scholar 

  • Mukundan R, Brosha E, Brown D, Garzon F (1999) Ceria-electrolyte-based mixed potential sensors for the detection of hydrocarbons and carbon monoxide. Electrochem Soc Lett 2(8):412–414

    CAS  Google Scholar 

  • Mulla IS, Ramgir NS, Hwang YK, Chang J-S (2004) Semiconductor tin oxide gas sensors: from bulk to thin films. J Ind Eng Chem 10(7):1242–1256

    CAS  Google Scholar 

  • Murch GE, Nowick AS (eds) (1984) Diffusion in crystalline solids. Academic, New York

    Google Scholar 

  • Nakamura Y, Ando A, Tsurutani T, Okada O, Miyayama M, Koumoto K, Yanagida H (1986) Gas sensitivity of CuO/ZnO hetero-contact. Chem Lett 1986:413–416

    Google Scholar 

  • Nakamura Y, Yoshioka H, Miyayama M, Yanagida H (1990) Selective CO gas sensing mechanism with CuO/ZnO heterocontact. J Electrochem Soc 137:940–943

    CAS  Google Scholar 

  • Nakayama S, Sakamoto M (1998) Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy,). J Eur Ceram Soc 18:1413–1418

    CAS  Google Scholar 

  • Nigara Y, Mizusaki J, Kawamura K, Kawada T, Ishigame M (1998) Hydrogen permeability in (CeO2)(0.9)(CaO)(0.1) at high temperatures. Solid State Ionics 113:347–354

    Google Scholar 

  • Nishibori M, Tajima K, Shin W, Izu N, Itoh T, Matsubara I (2006) CO oxidation catalyst of Au-TiO2 on the thermoelectric gas sensor. J Ceram Soc Jpn 115:34–41

    Google Scholar 

  • Nishimura R, Toba K, Yamakawa K (1996) The development of a ceramic sensor for the prediction of hydrogen attack. Corros Sci 38:611–621

    CAS  Google Scholar 

  • Nowick AS, Du Y, Liang KC (1999) Some factors that determine proton conductivity in nonstoichiometric complex perovskites. Solid State Ionics 125:303–311

    CAS  Google Scholar 

  • Oelerich W, Klassen T, Bormann R (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd 315:237–242

    CAS  Google Scholar 

  • Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53:4448–4455

    CAS  Google Scholar 

  • Okamura K, Ishiji T, Iwaki M, Suzuki Y, Takahashi K (2007) Electrochemical gas sensor using a novel gas permeable electrode modified by ion implantation. Surf Coat Technol 201:8116–8119

    CAS  Google Scholar 

  • Oprea A, Courbat J, Bârsan N, Briand D, de Rooij NF, Weimar U (2009) Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sens Actuators B 140:227–232

    CAS  Google Scholar 

  • Park CO, Akbar SA (2003) Ceramics for chemical sensing. J Mater Sci 38:4611–4637

    CAS  Google Scholar 

  • Park SS, Mackenzie JD (1996) Thickness and microstructure effect on alcohol sensing of tin oxide thin films. Thin Solid Films 274:154–159

    CAS  Google Scholar 

  • Park CO, Akbar SA, Weppner W (2003) Ceramic electrolytes and electrochemical sensors. J Mater Sci 38:4639–4660

    CAS  Google Scholar 

  • Park CO, Fergus JW, Miura N, Park J, Choi A (2009) Solid-state electrochemical gas sensors. Ionics 15:261–284

    CAS  Google Scholar 

  • Patil LA (2009) Fe2O3 - ZnO based gas sensors. Sens Transducers J 104(5):68–75

    CAS  Google Scholar 

  • Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17:398–402

    CAS  Google Scholar 

  • Pavelko RG, Vasiliev AA, Llobet E, Vilanova X, Barrabés N, Medina F, Sevastyanov VG (2009) Comparative study of nanocrystalline SnO2 materials for gas sensor application: thermal stability and catalytic activity. Sens Actuators B 137:637–643

    CAS  Google Scholar 

  • Peng L, Xie TF, Yang M, Xu D, Pang S, Wang DJ (2008) Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature. Sens Actuators B 131:660–664

    CAS  Google Scholar 

  • Pijolat C (1986) Etude des proprietes physico-chimiques et des proprietes electriques du dioxyde d’etain en fonction de l’atmosphere gazeuse environnante. Application a la detection selective des gaz. PhD Thesis, l’Institut National Polytechnique de Grenoble

    Google Scholar 

  • Pijolat C, Viricelle JP, Tournier G, Montment P (2006) Application of membranes and filtering films for gas sensors improvements. Thin Solid Films 490:7–16

    Google Scholar 

  • Pitts JR (2002) Detecting hydrogen with chemochromic thin films. Ind Physicist (AIP) Forum June/July:31

    Google Scholar 

  • Polla DL, White RM, Muller RS (1985) Integrated chemical-reaction sensor. In: Digest of technical papers of TRANSDUCERS ’85. 1985 International conference on solid-state sensors and actuators, 11–14 June 1985, Philadelphia, pp 33–36

    Google Scholar 

  • Prades JD, Jimenes-Diaz R, Hernandez-Ramirez F, Fernandez-Romero L, Andreu T, Cirera A, Romano-Rodriguez A, Cornet A, Morante JR, Barth S, Mathur S (2008) Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. J Phys Chem C 112:14639–14644

    CAS  Google Scholar 

  • Prades JD, Jemenes-Diaz R, Manzanares M, Hernandez-Ramirez F, Cirera A, Romano-Rodriguez A, Marthur S, Morante JR (2009) A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires. Phys Chem Chem Phys 11:1–9

    Google Scholar 

  • Qiu S, Gao C, Zheng X, Chen J, Yang C, Gan X, Fan H (2008) Pb(Zr0.95Ti0.05)O3 powders prepared by aqueous Pechini method using one-step pyrolysis process: characterization and porous ceramics. J Mater Sci 43(9):3094–3100

    CAS  Google Scholar 

  • Ramgir NS, Mulla IS, Vijayamohanan KP (2005) A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens Actuators B 107:708–715

    CAS  Google Scholar 

  • Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38:4271–4282

    CAS  Google Scholar 

  • Rettig F, Moos R (2007a) Direct thermoelectric gas sensors: design aspects and first gas sensors. Sens Actuators B 123:413–419

    CAS  Google Scholar 

  • Rettig F, Moos R (2007b) Direct thermoelectric hydrocarbon gas sensors based on SnO2. IEEE Sens J 7:1490–1496

    CAS  Google Scholar 

  • Rettig F, Moos R (2008) Morphology dependence of thermopower and resistance in semiconducting oxides with space charge regions. Solid State Ionics 179:2299–2307

    CAS  Google Scholar 

  • Rettig F, Moos R (2009) Temperature modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors. Meas Sci Technol 20:065205

    Google Scholar 

  • Robertson NL, Michaels JN (1990) Oxygen exchange on platinum electrodes in zirconia cells: location of electrochemical reaction sites. J Electrochem Soc 137:129–135

    CAS  Google Scholar 

  • Röder-Roith U, Rettig F, Röder T, Janek J, Moos R, Sahner K (2009) Thick-film solid electrolyte oxygen sensors using the direct ionic thermoelectric effect. Sens Actuators B 136:530–535

    Google Scholar 

  • Rothschild A, Tuller HL (2006) Gas sensors: new materials and processing approaches. J Electroceram 17:1005–1012

    CAS  Google Scholar 

  • Rothschild A, Litzelman SJ, Tuller HL, Menesklou W, Schneider T, Ivers-Tiffee E (2005) Temperature-independent resistive oxygen sensors based on SrTi1−xFexO3−δ solid solutions. Sens Actuators B 108:223–230

    CAS  Google Scholar 

  • Ruiz AM, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2005) Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens Actuators B 108:34–40

    CAS  Google Scholar 

  • Rumyantseva M, Kovalenko V, Gaskov A, Makshina E, Yuschenko V, Ivanova I, Ponzoni A, Faglia G, Comini E (2006) Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sens Actuators B 118:208–214

    CAS  Google Scholar 

  • Sadek Z, Wlodarski W, Shin K, Kaner RB, Kalantar-zadeh K (2006) A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17:4488–4492

    CAS  Google Scholar 

  • Sahm T, Gurlo A, Barsan N, Weimar U (2006) Properties of indium oxide semiconducting sensors deposited by different techniques. Particulate Sci Technol 24(4):441–452

    CAS  Google Scholar 

  • Sahner K, Tuller HL (2010) Novel deposition techniques for metal oxide: prospects for gas sensing. J Electroceram 24:177–199

    CAS  Google Scholar 

  • Sakai N, Yamaji K, Horita T, Yokokawa H, Hirata Y, Sameshima S, Nigara Y, Mizusaki J (1999) Determination of hydrogen solubility in oxide ceramics by using SIMS analyses. Solid State Ionics 125:325–331

    CAS  Google Scholar 

  • Sakthivel M, Weppner W (2007) Application of layered perovskite type proton conducting KCa2Nb3O10 in H2 sensors: Pt particle size and temperature dependence. Sens Actuators B 125:435–440

    CAS  Google Scholar 

  • Sakthivel M, Weppner W (2008) A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect. Int J Hydrogen Energy 33:905–911

    CAS  Google Scholar 

  • Sandu I, Presmanes L, Alphonse P, Tailhades P (2006) Nanostructured cobalt manganese ferrite thin films for gas sensor application. Thin Solid Films 495:130–133

    CAS  Google Scholar 

  • Satsuma A, Katagiri M, Kakimoto S, Sugaya S, Shimizu K (2011) Effects of calcination temperature and acid–base properties on mixed potential ammonia sensors modified by metal oxides. Sensors 11:2155–2165

    CAS  Google Scholar 

  • Sberveglieri G (1992) Classical and novel techniques for the preparation of SnO2 thin-film gas sensors. Sens Actuators B 6:239–247

    CAS  Google Scholar 

  • Scherban Е, Nowick AS (1989) Bulk protonic conduction in Yb-doped SrCeO3. Solid State Ionics 35:189–194

    Google Scholar 

  • Schierbaum KD (1995) Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends. Sens Actuators B 24–25:239–247

    Google Scholar 

  • Schönauer D, Wiesner K, Fleischer M, Moos R (2009) Selective mixed potential ammonia exhaust gas sensor. Sens Actuators B 140:585–590

    Google Scholar 

  • Schreiter M, Gabl R, Lerchner J, Hohlfeld C, Delan A, Wolf G, Bluher A, Katzschner B, Mertig M, Poempec W (2006) Functionalized pyroelectric sensors for gas detection. Sens Actuators B 119:255–261

    CAS  Google Scholar 

  • Sears WM, Colbow K, Consadori F (1989) General characteristics of thermally cycled tin oxide gas sensors. Semicond Sci Technol 4:351–359

    CAS  Google Scholar 

  • Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503

    CAS  Google Scholar 

  • Shanak H, Schmitt H, Nowoczin J, Ziebert C (2004) Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations. Solid State Ionics 171:99–106

    CAS  Google Scholar 

  • Shi S, Liu Y, Chen Y, Zhang J, Wang Y, Wang T (2009) Ultrahigh ethanol response of SnO2 nanorods at low working temperature arising from La2O3 loading. Sens Actuators B 140:426–431

    CAS  Google Scholar 

  • Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24:18–24

    CAS  Google Scholar 

  • Shimura T, Komori M, Iwahara H (1996) Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature. Solid State Ionics 86:685–689

    Google Scholar 

  • Shimura T, Fujimoto S, Iwahara H (2001) Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics 143:117–123

    CAS  Google Scholar 

  • Shin W, Imai K, Izu N, Murayama N (2001) Thermoelectric thick-film hydrogen gas sensor operating at room temperature. Jpn J Appl Phys 2 Lett 40:L1232–L1234

    Google Scholar 

  • Shin W, Matsumiya M, Izu N, Murayama N (2003) Hydrogen-selective thermoelectric gas sensor. Sens Actuators B 93:304–308

    CAS  Google Scholar 

  • Shin W, Choi Y, Tajima K, Izu N, Matsubara I, Murayama N (2005) Planar catalytic combustor film for thermoelectric hydrogen sensor. Sens Actuators B 108:455–460

    CAS  Google Scholar 

  • Shin W, Nishibori M, Matsubara I (2011) Gas sensors using pyroelectric and thermoelectric effects. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state devices. Momentum, New York, pp 261–285

    Google Scholar 

  • Shouli B, Dianqing L, Dongmei H, Ruixian L, Aifan C, Liu CC (2010) Preparation, characterization of WO3-SnO2 nanocomposites and their sensing properties for NO2. Sens Actuators B 150:749–755

    Google Scholar 

  • Shukla S, Seal S, Ludwig L, Parish C (2004) Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor. Sens Actuators B 97:256–265

    CAS  Google Scholar 

  • Shukla S, Zhang P, Cho HJ, Ludwig L, Seal S (2008) Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor. Int J Hydrogen Energy 33:470–475

    CAS  Google Scholar 

  • Siemons M, Leifert A, Simon U (2007) Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv Funct Mater 17:2189–2197

    CAS  Google Scholar 

  • Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. Appl Mater Int 3:2246–2252

    CAS  Google Scholar 

  • Siroky K (1993) Use of the Seebeck effect for sensing flammable gas and vapors. Sens Actuators B 17:13–17

    CAS  Google Scholar 

  • Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6:30–37

    CAS  Google Scholar 

  • Smith RD II, Benson DK, Pitts RJ, Oison DL, Wildeman TR (2001) Diffusible weld hydrogen measurement by fiber optic sensors. Materialpruefung/Mater Test 43(1–2):26–29

    CAS  Google Scholar 

  • Smith RD II, Pitts JR, Lee S-H, Tracy E (2004) Protective coatings for Pd-based hydrogen sensors. Prep Pap Am Chem Soc Div Fuel Chem 49(2):968–969

    CAS  Google Scholar 

  • Solis JL, Lantto V (1995) A study of gas-sensing properties of sputtered α-SnWO4 thin films. Sens Actuators B 24–25:591–595

    Google Scholar 

  • Solis JL, Saukko S, Kish L, Granqvist CG, Lantto V (2001) Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391:255–260

    CAS  Google Scholar 

  • Stamataki M, Tsamakis D, Brilis N, Fasaki I, Giannoudakos A, Kompitsas M (2008) Hydrogen gas sensors based on PLD grown NiO thin film structures. Physica Status Solidi 205(8):2064–2068

    CAS  Google Scholar 

  • Stankova M, Vilanova X, Calderer J, Llobet E, Ivanov P, Gracia I, Cane C, Correig X (2004) Detection of SO2 and H2S in CO2 stream by means of WO3-based micro-hotplate sensors. Sens Actuators B 102:219–225

    CAS  Google Scholar 

  • Stefanik TS, Tuller HL (2001) Ceria-based gas sensors. J Eur Ceram Soc 21:1967–1970

    CAS  Google Scholar 

  • Stolen S, Bakken E, Mohn CE (2006) Oxygen-deficient perovskites: linking structure, energetics and ion transport. Phys Chem Chem Phys 8:429–447

    CAS  Google Scholar 

  • Stoukides M (1988) Applications of solid electrolytes in heterogeneous catalysis. Ind Eng Chem Res 27:1745–1750

    CAS  Google Scholar 

  • Subbarao EC, Maiti HS (1984) Solid electrolytes with oxygen ion conduction. Solid State Ionics 11:317–338

    CAS  Google Scholar 

  • Sun J, Xu JY, Yu SP, Liu FG, Lu G (2012) UV-activated room temperature metal oxide based gas sensor attached with reflector. Sens Actuators B 169:291–296

    CAS  Google Scholar 

  • Sundmacher K, Rihko-Struckmann LK, Galvita V (2005) Solid electrolyte membrane reactors: status and trends. Catal Today 104:185–199

    CAS  Google Scholar 

  • Suzuki T, Yamazaki T (1990) Effect of annealing on the gas sensitivity of thin oxide ultra-thin films. J Mater Sci Lett 9:750–751

    CAS  Google Scholar 

  • Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B 139:699–703

    CAS  Google Scholar 

  • Taguchi N (1971) Gas detecting device. US Patent 3,631,436

    Google Scholar 

  • Tamaki J, Akiyama M, Xu C, Miura N, Yamazoe N (1990) Conductivity change of SnO2 with CO2 adsorption. Chem Lett 1990:1243–1246

    Google Scholar 

  • Tamaki J, Shimanoe K, Yamada Y, Yamamoto Y, Miura N, Yamazoe N (1998) Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method. Sens Actuators B 49:121–125

    CAS  Google Scholar 

  • Tamaki J, Miyaji A, Makinodan J, Ogura S, Konishi S (2005) Effect of micro-gap electrode on detection of dilute NO2 using WO3 thin film microsensors. Sens Actuators B 108:202–206

    CAS  Google Scholar 

  • Taniguchi N, Kuroha T, Nishimura C, Iijima K (2005) Characteristics of novel BaZr0.4Ce0.4In0.2O3 proton conducting ceramics and their application to hydrogen sensors. Solid State Ionics 176:2979–2983

    CAS  Google Scholar 

  • Tanner CW, Virkar AV (1996) Instability of BaCeO3 in H2O-containing atmospheres. J Electrochem Soc 143:1386–1389

    CAS  Google Scholar 

  • Tao S, Irvine JTS (2001) Preparation and characterisation of apatite-type lanthanum silicates by a sol–gel process. Mat Res Bull 36:1245–1258

    CAS  Google Scholar 

  • Tao S, Poulsen FW, Meng G, Sùrensen OT (2000) High-temperature stability study of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x. J Mater Chem 10:1829–1833

    CAS  Google Scholar 

  • Tejuca LJ, Fierro JLG (eds) (1993) Properties and applications of perovskite-type oxides. Marcel Dekker, New York

    Google Scholar 

  • Tesfamichael T, Motta N, Bostrom T, Bell JM (2007) Development of porous metal oxide thin films by coevaporation. Appl Surf Sci 253:4853–4859

    CAS  Google Scholar 

  • Thangadurai V, Weppner W (2001a) AA′2M3O10(A = K, Rb, Cs; A′ = Ca; M = Nb) layered perovskites: low-temperature proton conductors in hydrogen atmospheres. J Mater Chem 11:636–639

    CAS  Google Scholar 

  • Thangadurai V, Weppner W (2001b) Electrical properties of A’Ca2Nb3O10 (A’=K, Rb, Cs) layered perovskite ceramics. Ionics 7:22–31

    CAS  Google Scholar 

  • Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12:81–92

    CAS  Google Scholar 

  • Thompson M, Stone DC (1997) Surface-launched acoustic wave sensors: chemical sensing and thin-film characterization. Wiley, New York

    Google Scholar 

  • Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87:222106

    Google Scholar 

  • Toan NN, Saukko S, Lantto V (2003) Gas sensing with semiconducting perovskite oxide LaFeO3. Phys B Condens Matter 327:279–282

    CAS  Google Scholar 

  • Toda K, Kameo Y, Kurita S, Sato M (1996) Crystal structure determination and ionic conductivity of layered perovskite compounds NaLnTiO4 (Ln = Rare Earth). J Alloys Compd 234:19–25

    CAS  Google Scholar 

  • Tomchenko AA, Harmer GP, Marquis BT, Allen JW (2003) Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens Actuators B 93:126–134

    CAS  Google Scholar 

  • Tongpool R, Leach C, Freer R (2000) Temperature and microstructural dependence of the sensitivity of heterocontacts between zinc oxide and copper oxide in reducing environments. J Mater Sci Lett 19:119–121

    CAS  Google Scholar 

  • Traqueia LSM, Marques FMB, Kharton VV (2006) Oxygen ion conduction in oxide materials: selected examples and basic mechanisms. Bol Soc Esp Ceram 45(3):115–121

    CAS  Google Scholar 

  • Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuators B 23:135–156

    CAS  Google Scholar 

  • Tricoli A, Righettoni M, Pratsinis SE (2009) Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions. Nanotechnology 20:315502

    Google Scholar 

  • Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131:143–157

    CAS  Google Scholar 

  • Tuller HL (2003) Defect engineering: design tools for solid state electrochemical devices. Electrochim Acta 48:2879–2887

    CAS  Google Scholar 

  • Ushio Y, Miyayama M, Yanagida H (1994) Effects of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction. Sens Actuators B 17:221–226

    CAS  Google Scholar 

  • Vallejos S, Khatko V, Calderer J, Gracia I, Cane C, Llobet E, Correig X (2008) Micromachined WO3-based sensors selective to oxidizing gases. Sens Actuators B 132:209–215

    CAS  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18(1):156–165

    CAS  Google Scholar 

  • Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N (2004) A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J Nanosci Nanotechnol 4:733–737

    CAS  Google Scholar 

  • Vasil’ev RB, Rumyantseva MN, Ryabova LI, Akimov BA, Gas’kov AM, Labeau M, Langlet M (1999) Electric-field-controlled memory effect in heterostructures for gas sensors. Tech Phys Lett 25(6):471–474

    Google Scholar 

  • Vasiliev RB, Rumyantseva MN, Yakovlev NV, Gaskov AM (1998) CuO:SnO2 thin film heterostructures as chemical sensors to H2S. Sens Actuators B 50:186–193

    CAS  Google Scholar 

  • Vasiliev RB, Rumyantseva MN, Podguzova SE, Ryzhikov AS, Ryabova LI, Gaskov AM (1999) Effect of interdiffusion on electrical and gas sensor properties of CuO:SnO2 heterostructure. Mater Sci Eng B 57:241–246

    Google Scholar 

  • Wada K, Egashira M (2000) Hydrogen sensing properties of SnO2 subjected to surface chemical modification with ethoxysilanes. Sens Actuators B 62:211–219

    CAS  Google Scholar 

  • Wagner T, Hennemann J, Kohl C-D, Tiemann N (2011) Photocatalytic ozone sensor based on mesoporous indium oxide: influence of the relative humidity on the sensing performance. Thin Solid Films 520:918–921

    CAS  Google Scholar 

  • Wakamura K (2005) Empirical relationships for ion conduction based on vibration amplitude in perovskite-type proton and superionic conductors. J Phys Chem Solids 66:133–142

    CAS  Google Scholar 

  • Wang W, Virkar AV (2005) Ionic and electron–hole conduction in BaZr0.93Y0.07O3−d by 4-probe DC measurements. J Power Sources 142(1–2):1–9

    Google Scholar 

  • Wang JD, Xie YH, Zhang ZF, Liu RQ, Li ZJ (2005) Protonic conduction in Ca2+-doped La2M2O7 (M = Ce, Zr) with its application to ammonia synthesis electrochemically. Mater Res Bull 40:1294–1302

    CAS  Google Scholar 

  • Wang DY, Symons WT, Farhat RJ, Valdes CA, Briggs EM, Polikarpus KK, Kupe J (2006a) Ammonia gas sensors. US Patent 7,074,319 B2

    Google Scholar 

  • Wang CH, Chu XF, Wu MW (2006b) Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens Actuators B 113:320–323

    CAS  Google Scholar 

  • Weppner W (2000) Concepts and materials aspects of developing solid state ionic devices. In: Chowdari BVR, Wang W (eds) Proceedings of the 7th Asian conference on solid state ionics: materials and devices. Word Scientific, River Edge, NJ, pp 3–12

    Google Scholar 

  • West AR (1999) Basic solid state chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  • West AR (2006) Inorganic functional materials: optimization of properties by structural and compositional control. Chem Rec 6:206–216

    CAS  Google Scholar 

  • Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B 160:580–591

    CAS  Google Scholar 

  • Whitten MC, Janine EC, Peterson BV, Trigwell S, Berger CM, Mohajeri N, Bokerman G, Muradov N, T-Raissi A, McPherson J (2006) Chemochromic hydrogen detection. Proc SPIE 6222:62220C

    Google Scholar 

  • Williams D (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B 57:1–16

    CAS  Google Scholar 

  • Williams DE, Pratt KFE (1998) Classification of reactive sites on the surface of polycrystalline tin dioxide. J Chem Soc Faraday Trans 94:3493–3500

    CAS  Google Scholar 

  • Wilson DM, Hoyt S, Janata J, Booksh K, Obando L (2001) Chemical sensors for portable, handheld field instruments. IEEE Sens J 1:256–274

    CAS  Google Scholar 

  • Wohltjen H, Snow AW (1998) Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal Chem 70:2856–2859

    CAS  Google Scholar 

  • Wu JM (2011) TiO2/Ti1-xSnxO2 heterojunction nanowires: characterization, formation, and gas sensing performance. J Mater Chem 21:14048–14055

    CAS  Google Scholar 

  • Wu L, Wu C-C, Wu M-M (1990) Humidity sensitivity of Sr(Sn, Ti)O3 ceramics. J Electron Mater 19:197–200

    CAS  Google Scholar 

  • Wuensch BJ, Eberman KW, Heremans C, Ku EM, Onnerud P, Yeo EME, Haile SM, Stalick JK, Jorgensen JD (2000) Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ionics 129:111–133

    CAS  Google Scholar 

  • Xing L-L, Yuan S, Chen Z-H, Chen Y-J, Xue X-Y (2011) Enhanced gas sensing performance of SnO2/a-MoO3 heterostructure nanobelts. Nanotechnology 22:225502

    Google Scholar 

  • Xirouchaki C, Kiriakidis G, Pedersen TF, Fritzsche H (1996) Photoreduction and oxidation of as-deposited microcrystalline indium oxide. J Appl Phys 79:9349–9352

    CAS  Google Scholar 

  • Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155

    CAS  Google Scholar 

  • Yadav BC, Pandey NK, Srivastava A, Sharma P (2007) Optical humidity sensors based on titania films fabricated by sol–gel and thermal evaporation methods. Meas Sci Technol 18:260–264

    CAS  Google Scholar 

  • Yajima T, Iwahara H, Uchida H, Koide K (1990) Relation between proton conduction and concentration of oxide ion vacancy in SrCeO3 based sintered oxides. Solid State lonics 40–41:914–917

    Google Scholar 

  • Yajima T, Iwahara H, Koide K, Yamamoto K (1991) CaZrO3-type hydrogen and steam sensors: trial fabrication and their characteristics. Sens Actuators B 5:145–147

    CAS  Google Scholar 

  • Yajima T, Koide K, Takai H, Fukatu N, Iwahara H (1995) Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries. Solid State Ionics 79:333–337

    CAS  Google Scholar 

  • Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19

    CAS  Google Scholar 

  • Yamazoe N, Miura N (1992) Some basic aspects of semiconductor gas sensors. In: Yamauchi S (ed) Chemical sensors technology, vol 4. Kodansha/Elsevier, Tokyo/Amsterdam, pp 20–41

    Google Scholar 

  • Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sens Actuators 4:283–289

    CAS  Google Scholar 

  • Yang T-Y, Lin H-M, Wie B-Y, Wu C-Y, Lin C-K (2003) UV enhancement of the gas sensing properties of nano-TiO2. Rev Adv Mater Sci 4:48–54

    CAS  Google Scholar 

  • Yang J, Hidajat K, Kawi S (2008) Synthesis of nano-SnO2/SBA-15 composite as a highly sensitive semiconductor oxide gas sensor. Mater Lett 62:1441–1443

    CAS  Google Scholar 

  • Ye C, Tamagawa T, Polla DL (1991) Experimental studies on primary and secondary pyroelectric effects in Pb(Zr, Ti1-x ,)O3, PbTiO3, and ZnO thin films. J Appl Phys 70(10):5538–5543

    CAS  Google Scholar 

  • Zampiceni E, Comini E, Faglia G, Sberveglieri G, Kaciulis S, Pandolfi L, Viticoli S (2003) Composition influence on the properties of sputtered Sn–W–O films. Sens Actuators B 89:225–231

    CAS  Google Scholar 

  • Zhang J-G, Benson DK, Tracy CE, Deb SK, Czanderna AW, Bechinger C (1996) Electrochromic mechanism in a-WO3 films. J Electrochem Soc 24:251–259

    CAS  Google Scholar 

  • Zhang D, Li C, Han S, Liu X, Tang T, Jin W, Zhou C (2003) Ultraviolet photodetection properties of indium oxide nanowires. Appl Phys A 77:163–166

    CAS  Google Scholar 

  • Zhang T, Liu L, Qi Q, Li S, Lu G (2009) Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection. Sens Actuators B 139:287–291

    CAS  Google Scholar 

  • Zhao YM, Zhu YQ (2009) Room temperature ammonia sensing properties of W18O49 nanowires. Sens Actuators B 137:27–31

    Google Scholar 

  • Zhao M, Huang JX, Ong CW (2012) Room-temperature resistive H2 sensing response of Pd/WO3 nanocluster-based highly porous film. Nanotechnology 23:315503

    Google Scholar 

  • Zheng W, Lu X, Wang W, Li Z, Zhang H, Wang Z, Xu X, Li S, Wang C (2009) Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection. J Colloid Interface Sci 338:366–370

    CAS  Google Scholar 

  • Zhuiykov S, Miura N (2007) Development of zirconia-based potentiometric NO x sensors for automotive and energy industries in the early 21st century: what are the prospects for sensors? Sens Actuators B 121:639–651

    CAS  Google Scholar 

  • Zisekas S, Karagiannakis G, Kokkofitis C, Stoukides M (2008) NH3 decomposition in a proton conducting solid electrolyte cell. J Appl Electrochem 38:1143–1149

    CAS  Google Scholar 

  • Zosel J, Ahlborn K, Müller R, Westphal D, Vashook V, Gutha U (2004) Selectivity of HC-sensitive electrode materials for mixed potential gas sensors. Solid State Ionics 169:115–119

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Metal Oxides. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_2

Download citation

Publish with us

Policies and ethics