Sensing Layers in Work-Function-Type Gas Sensors

  • Ghenadii Korotcenkov
Part of the Integrated Analytical Systems book series (ANASYS)


Classical work-function-type gas sensors are specific devices based on the Kelvin method (using the so-called Kelvin probe or Kelvin oscillator). Features of these gas sensors’ operation and the various materials, such as metallic films, inorganic and organic layers, which can be used in these devices as a sensing element, are discussed. The chapter includes 9 figures, 1 table, and 67 references.


Work Function Sensitive Layer Gold Chloride Inorganic Layer Floating Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersson M, Holmberg M, Lundström I, Lloyd-Spetz A, Martenson P, Paolesse R, Falconi C, Proiett E, Di Natale C, D’Amico A (2001) Development of a ChemFET sensor with molecular films of porphyrins as sensitive layer. Sens Actuators B 77:567–571CrossRefGoogle Scholar
  2. Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839CrossRefGoogle Scholar
  3. Barsan N, Heilig A, Kappler J, Weimar U, Göpel W (1999) CO–water interaction with Pd-doped SnO2 gas sensors: simultaneous monitoring of resistances and work functions. In: Proceedings of European conference on solid state transducers, Eurosensors XIII, September 6–9, Hague, The Netherlands, pp 183–184Google Scholar
  4. Belier JP, Lecoeur J, Koehler C (1995) Improved Kelvin method for measuring contact potential differences between stepped gold surfaces in ultrahigh vacuum. Rev Sci Instrum 66(12):5544–5547CrossRefGoogle Scholar
  5. Bergstrom PL, Patel NY, Schwank JW, Wise KD (1997) A micromachined surface work-function gas sensor for low-pressure oxygen detection. Sens Actuators B 42:195–204CrossRefGoogle Scholar
  6. Blackwood D, Josowicz M (1991) Work function and spectroscopic studies of interactions between conducting polymers and organic vapors. J Phys Chem 95:493–502CrossRefGoogle Scholar
  7. Bögner M, Fuchs A, Scharnagel K, Winter R, Doll T, Eisele I (1998) Thin (NiO)1-x(Al2O3)x, Al doped and Al coated NiO layers for gas detection with HGSFET. Sens Actuators B 47:145–152CrossRefGoogle Scholar
  8. Bouvet M, Guillaudb G, Leroy A, Maillard A, Spirkovitch A, Tournilhac F-G (2001) Phthalocyanine-based field-effect transistor as ozone sensor. Sens Actuators B 73:63–70CrossRefGoogle Scholar
  9. Bufon CCB, Heinzel T (2006) Polypyrrole thin-film field-effect transistor. Appl Phys Lett 89:012104CrossRefGoogle Scholar
  10. Burgmair M, Wöllenstein J, Böttner H, Karthigeyan A, Anothainart K, Eisele I (2002) Ti-substituted chromium oxide in work function type sensors: ammonia detection at room temperature with low humidity cross sensitivity. In: Proceedings of international workshop on materials and technologies for chemical sensors, Sept. 2001, Brescia (Italy). (Paper was not published in a journal; it can be found at
  11. Burgmair M, Zimmer M, Eisele I (2003a) Humidity and temperature compensation in work function gas sensor FETs. Sens Actuators B 93:271–275CrossRefGoogle Scholar
  12. Burgmair M, Frerichs H-P, Zimmer M, Lehmann M, Eisele I (2003b) Field effect transducers for work function gas measurements: device improvements and comparison of performance. Sens Actuators B 95:183–188CrossRefGoogle Scholar
  13. Cabala R, Meister V, Potje-Kamloth K (1997) Effect of competitive doping on sensing properties of polypyrrole. J Chem Soc Faraday Trans 93:131–137CrossRefGoogle Scholar
  14. Cassidy J, Pons S, Janata J (1986) Hydrogen response of palladium coated gate field effect transistor. Anal Chem 58:1757–1761CrossRefGoogle Scholar
  15. Cho WI, Yi CW, Ju JB, Cho BW, Yun KS (1991) Characteristics of a thin-film LaF3 solid electrolyte for oxygen sensing. Sens Actuators B 5:149–153CrossRefGoogle Scholar
  16. Choi SK, Yi CW, Cho WI, Cho JJB, Yun KS, Yamazoe N (1993) A MOSFET type sensor for oxygen sensing LaF3 as a gate material. Sens Actuators B 13:45–48CrossRefGoogle Scholar
  17. Covington JA, Gardner JW, Briand D, de Rooij NF (2001) A polymer gate FET sensor array for detecting organic vapours. Sens Actuators B 77:155–162CrossRefGoogle Scholar
  18. D’Amico A, Di Natale C, Paolesse R, Macagnano A, Mantini A (2000a) Metalloporphyrins as basic material for volatile sensitive sensors. Sens Actuators B 65:209–215CrossRefGoogle Scholar
  19. D’Amico A, Di Natale C, Paolesse R, Mantini A, Goletti C, Davide F, Filosofi G (2000b) Chemical sensing materials characterization by Kelvin probe technique. Sens Actuators B 70:254–262CrossRefGoogle Scholar
  20. Di Natale C, Paolesse R, Mantini A, Macagnano A, Boschi T, D’Amico A (1998) Kelvin probe investigation of self-assembled-monolayers of thiol derivatized porphyrins interacting with volatile compounds. Sens Actuators B 48:368–372CrossRefGoogle Scholar
  21. Doll T, Lechner J, Eisele I, Schierbaum K-D, Göpel W (1996) Ozone detection in the ppb range with work function sensors operating at room temperature. Sens Actuators B 34:506–510CrossRefGoogle Scholar
  22. Doll T, Scharnagel K, Winter R, Bogner I, Eisele I, Ostrik B, Schoning M (1998) Work function gas sensors – reference layers and signal analysis. In: Proceedings of European conference on solid state transducers, Eurosensors XII, Southampton, UK, 13–16 Sept, pp 143–146Google Scholar
  23. Domansky K, Baldwin DL, Grate JW, Hall TB, Li J, Josowicz M, Janata J (1998) Development and calibration of field-effect transistorbased sensor array for measurement of hydrogen and ammonia gas mixtures in humid air. Anal Chem 70:473–481CrossRefGoogle Scholar
  24. Engelhardt HA, Feulner P, Pfnür H, Menzel D (1970) An accurate and versatile vibrating capacitor for surface and adsorption studies. J Phys E Sci Instrum 10:1133–1136CrossRefGoogle Scholar
  25. Filippini D, Fraigi L, Aragon R, Weimar U (2002) Thick film Au gate field-effect devices sensitive to NO2. Sens Actuators B 81:296–300CrossRefGoogle Scholar
  26. Fleischer M (2008) Advances in application potential of adsorptive-type solid state gas sensors: high-temperature semiconducting oxides and ambient temperature GasFET devices. Meas Sci Technol 19:042001CrossRefGoogle Scholar
  27. Fleischer M, Ostrick B, Pohle R, Simon E, Meixner H, Bilger C, Daeche F (2001) Low-power gas sensors based on work-function measurement in low-cost hybrid flip-chip technology. Sens Actuators B 80:169–173CrossRefGoogle Scholar
  28. Flietner B, Doll T, Lechner J, Leu M, Eisele I (1994) Fabrication of a hybrid field-effect structure for gas detection with diverse sensitive materials. Sens Actuators B 18–19:632–636CrossRefGoogle Scholar
  29. Fuchs A, Bogner M, Doll T, Eisele I (1998) Room temperature ozone sensing with KI layers integrated in HSGFET gas sensors. Sens Actuators B 48:296–299CrossRefGoogle Scholar
  30. Gergintschew Z, Kornetzky P, Schipanski D (1996) The capacitively controlled field effect transistor (CCFET) as a new low power gas sensor. Sens Actuators B 35–36:285–289CrossRefGoogle Scholar
  31. Gu C, Sun L, Zhang T, Li T, Zhang X (1998) High-sensitivity phthalocyanine LB film gas sensor based on field effect transistor. Thin Solid Films 327–329:383–386CrossRefGoogle Scholar
  32. Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B 102:291–298CrossRefGoogle Scholar
  33. Harbeck M (2005) New applications of organic polymers in chemical gas sensors. PhD Thesis, University of Tibingen, GermanyGoogle Scholar
  34. Hatfield JV, Covington JA, Gardner JW (2000) GasFETs incorporating conducting polymers as gate materials. Sens Actuators B 65:253–256CrossRefGoogle Scholar
  35. Janata J (1990) Potentiometric microsensors. Chem Rev 90:691–703Google Scholar
  36. Janata J (2003) Electrochemical microsensors. Proc IEEE 91:864–869Google Scholar
  37. Janata J, Josowicz M (1998) Chemical modulation of work function as a transduction mechanism for chemical sensors. Acc Chem Res 31:241–248CrossRefGoogle Scholar
  38. Josowicz M, Janata J (1986) Suspended gate field effect transistor modified with polypyrrole as alcohol sensor. Anal Chem 58:514–517CrossRefGoogle Scholar
  39. Karthigeyan A, Gupta RP, Scharnagl K, Burgmair M, Zimmer M, Sharma SK, Eisele I (2001) Low temperature NO2 sensitivity of nano-particulate SnO2 film for work function sensors. Sens Actuators B 78:69–72CrossRefGoogle Scholar
  40. Karthigeyan A, Gupta RP, Scharnagl K, Burgmair M, Sharma SK, Eisele I (2002) A room temperature HSGFET ammonia sensor base on iridium oxide thin film. Sens Actuators B 85:145–153CrossRefGoogle Scholar
  41. Karthigeyan A, Gupta RP, Scharnagl K, Burgmair M, Zimmer M, Sulima T, Venkataraj S, Sharma SK, Eisele I (2004) Iridium oxide as low temperature NO2-sensitive material for work function-based gas sensors. IEEE Sens J 4(2):189–194CrossRefGoogle Scholar
  42. Kelvin LF (1898) Contact electricity of metals. Philos Mag J Sci 46(278):82–120CrossRefGoogle Scholar
  43. Kiss G, Varhegyi EB, Mizsei J, Krafcsik OH, Kovacs K, Negyesi G, Ostrick B, Meixner H, Reti F (2000) Examination of the CO/Pt/Cu layer structure with Kelvin probe and XPS analysis. Sens Actuators B 68:240–243CrossRefGoogle Scholar
  44. Lampe U, Simon E, Pohle R, Fleischer M, Meixner H, Frerichs H-P, Lehmann M, Kiss G (2005) GasFETs for the ­detection of reducing gases. Sens Actuators B 111–112:106–110Google Scholar
  45. Liess M, Chinn D, Petelenz D, Janata J (1996) Properties of insulated gate field-effect transistors with a polyaniline gate electrode. Thin Solid Films 286:252–255CrossRefGoogle Scholar
  46. Lundström I, Shivaraman AS, Lundkvist L (1975) Hydrogen sensitive MOS field effect transistor. Appl Phys Lett 26:55–57CrossRefGoogle Scholar
  47. Miyahara Y, Tsukada K, Miyagi H (1988) Field–effect transistor using a solid electrolyte as a new oxygen sensor. J Appl Phys 63(7):2431–2434CrossRefGoogle Scholar
  48. Moos R, Sahner K, Fleischer M, Guth U, Barsan N, Weimar U (2009) Solid state gas sensor research in Germany – a status report. Sensors 9:4323–4365CrossRefGoogle Scholar
  49. Oprea A, Simon E, Fleischer M, Frerichs H-P, Wilbertz C, Lehmann M, Weimar U (2005) Flip-chip suspended gate field effect transistors for ammonia detection. Sens Actuators B 111:582–586CrossRefGoogle Scholar
  50. Ostrick B, Mühlsteff J, Fleischer M, Meixner H, Doll T, Kohl C-D (1999) Adsorbed water as key to room temperature gas sensitive reactions in work function type sensors: the carbonate-carbon dioxide system. Sens Actuators B 57:115–119CrossRefGoogle Scholar
  51. Ostrick B, Fleischer M, Meixner H, Kohl C-D (2000a) Investigation of the reaction mechanisms, in work function type gas sensors at room temperature by studies of the cross sensitivity to oxygen and water: the carbonate–carbon dioxide system. Sens Actuators B 68:197–202CrossRefGoogle Scholar
  52. Ostrick B, Pohle R, Fleischer M, Meixner H (2000b) TiN in work function type sensors: a stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity. Sens Actuators B 68:234–239CrossRefGoogle Scholar
  53. Ostrick B, Fleischer M, Meixner H (2003) The influences of interfaces and interlayers on the gas sensitivity in work function type sensors. Sens Actuators B 95:271–274CrossRefGoogle Scholar
  54. Pohle R, Simon E, Fleischer M, Meixner H, Frerichs H-P, Lehmann M, Verhoeven H (2003) Realisation of a new sensor concept: improved CCFET and SGFET type gas sensors in hybrid flip-chip technology. In: Proceedings of the 12th international conference on solid-state sensors, actuators and microsystems, TRANSDUCERS 2003, June, pp 135–138Google Scholar
  55. Pokhrel S, Simion CE, Quemener V, Barsan N, Weimar U (2008) Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements. Sens Actuators B 133:78–83CrossRefGoogle Scholar
  56. Senft C, Galonska T, Widanarto W, Frerichs H-P, Wilbertz C, Eisele I (2007) Stability of FET-based hydrogen sensors at high temperatures. In: Proceedings of IEEE sensors 2007 conference, Atlanta, GA, October, pp 189–192Google Scholar
  57. Simon E, Fleischer M, Meixner H (2000) Polyvinylpyrrolidon: a new material for humidity sensing using work function read out. In: Proceedings of 8th international meeting on chemical sensors, IMCS-2000, July 3–5, Basel, Switzerland, p 194Google Scholar
  58. Simon E, Lampe U, Pohle R, Fleischer M, Meixner H, Frerichs H-P, Lehmann M, Verhoeven H (2003) Novel carbon dioxide gas sensors based on field effect transistors. In: Proceedings of the 12th Transducers 2003, Boston, MA, USA, June, p 204Google Scholar
  59. Stegmeier S, Fleischer M, Hauptmann P (2008) Detections of VOCs with activated Pt and supported Pt sensing layers by the change of work function at room temperature. In: Proceedings of Eurosensors XXII, Dresden, Germany, September, pp 1424–1427Google Scholar
  60. Stegmeier S, Fleischer M, Hauptmann P (2010) Thermally activated platinum as VOC sensing material for work function type gas sensors. Sens Actuators B 144:418–424CrossRefGoogle Scholar
  61. Sulima T, Knittel T, Freitag G, Widanarto W, Eisele I (2005) A gas FET for chlorine detection. In: Proceedings of IEEE sensors 2005 conference, Irvine, CA, October–November, pp 113–115.Google Scholar
  62. Surplice NA, D’Arcy RJ (1970) A critique of the Kelvin method of measuring work functions. J Phys E Sci Instrum 3:477–482CrossRefGoogle Scholar
  63. Topart P, Josowicz M (1992a) Transient effects in the interaction between polypyrrole and methanol vapor. J Phys Chem 96:8662–8666CrossRefGoogle Scholar
  64. Topart P, Josowicz M (1992b) Characterization of the interaction between poly(pyrrole) films and methanol vapor. J Phys Chem 96:7824–7830CrossRefGoogle Scholar
  65. Wöllenstein J, Ihlenfeld F, Jaegle M, Köhner G, Böttner H, Becker WJ (2000) Gas-sensitive p-GaAs field effect device with catalytic gate. Sens Actuators B 68:22–26CrossRefGoogle Scholar
  66. Zanoria ES, Hammall K, Danyluk S, Zharin AL (1997) The nonvibrating Kelvin probe and its application for monitoring surface wear. J Test Eval 25(2):233–238CrossRefGoogle Scholar
  67. Zimmer M, Burgmair M, Scharnagl K, Karthigeyan A, Doll T, Eisele I (2001) Gold and platinum as ozone sensitive layer in work-function gas sensors. Sens Actuators B 80:174–178CrossRefGoogle Scholar
  68. Zisman WA (1932) A new method of measuring contact potential differences in metals. Rev Sci Instrum 3:367–370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Ghenadii Korotcenkov
    • 1
  1. 1.Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea, Republic of (South Korea)

Personalised recommendations