Skip to main content

Materials for Capacitance-Based Gas Sensors

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 5001 Accesses

Abstract

Capacitance-type sensors form a large percentage of existing sensor types used in both research and industry, as they offer significant advantages in terms of simplicity of fabrication, sensitivity, and low-power operation. This chapter explains the operation of these devices and analyzes the materials such as polymers, metal oxides, porous silicon, CNTs, etc., which are used to make them. The chapter includes 7 figures, 2 tables, and 82 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti K, Haas J, Plog C, Fetting F (1991) Zeolite coated interdigital capacitors as a new type of gas sensor. Catal Today 8:509–513

    Article  CAS  Google Scholar 

  • Amírola J, Rodríguez A, Castañer L, Santos JP, Gutiérrez J, Horrillo MC (2005) Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out. Sens Actuators B 111–112:247–253

    Article  Google Scholar 

  • Balkus KJ, Ball LJ, Gnade BE, Anthony JM (1997) A capacitance type chemical sensor based on AlPO4-5 molecular sieves. Chem Mater 9:380–386

    Article  CAS  Google Scholar 

  • Boltshauser T, Baltes H (1991) Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyimide. Sens Actuators A 26:509–512

    Article  CAS  Google Scholar 

  • Boltshauser T, Chandran L, Baltes H, Bose F, Steiner D (1991) Humidity sensing properties and electrical permittivity of new photosensitive polyimides. Sens Actuators B 5:161–164

    Article  CAS  Google Scholar 

  • Boucher EA (1976) Review porous materials: structure, properties and capillary phenomena. J Mater Sci 11:1734–1750

    Article  CAS  Google Scholar 

  • Brahim S, Colbern S, Gump R, Grigorian L (2008) Tailoring gas sensing properties of carbon nanotubes. J Appl Phys 104:024502

    Article  Google Scholar 

  • Britton CL Jr, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors. Ultramicroscopy 82:17–21

    Article  CAS  Google Scholar 

  • Casalini R, Kilitziraki M, Wood D, Petty MC (1999) Sensitivity of the electrical admittance of a polysiloxane film to organic vapors. Sens Actuators B 56:37–44

    Article  CAS  Google Scholar 

  • Chandran L, Baltes H, Korvink J (1991) Three-dimensional modeling of capacitive humidity sensors. Sens Actuators A 25:243–247

    Google Scholar 

  • Chatzandroulis S, Tserepi A, Goustouridis D, Normand P, Tsoukalas D (2002) Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor. Microelectron Eng 61–62:955–961

    Article  Google Scholar 

  • Chatzandroulis S, Tegou E, Goustouridis D, Polymenakos S, Tsoukalas D (2004) Capacitive-type chemical sensors using thin silicon-polymer bimorph membranes. Sens Actuators B 103:392–396

    Article  CAS  Google Scholar 

  • Chatzandroulis S, Tsouti V, Raptis I, Goustouridis D (2011) Capacitance-type chemical sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state sensors. Momentum Press, New York, pp 229–260

    Google Scholar 

  • Chen W-P, Zhao Z-G, Liu X-W, Zhang Z-X, Suo C-G (2009a) A capacitive humidity sensor based on multi-wall carbon nanotubes (MWCNTs). Sensors 9:7431–7444

    Article  CAS  Google Scholar 

  • Chen Y, Meng F, Li M, Liu J (2009b) Novel capacitive sensor: fabrication from carbon nanotube arrays and sensing property characterization. Sens Actuators B 140:396–401

    Article  CAS  Google Scholar 

  • Connolly EJ, Timmer B, Pham HTM, Groeneweg J, Sarro PM, Olthuis W, French PJ (2005) A porous SiC ammonia sensor. Sens Actuators B 109:44–46

    Article  CAS  Google Scholar 

  • Cornila C, Hierlemann A, Lenggenhager R, Malcovati P, Baltes, Hierlemann H, Noetzel G, Weimar U, Göpel W (1995) Capacitive sensors in CMOS technology with polymer coating. Sens Actuators B 25–27:357–361

    Article  Google Scholar 

  • Dai C-L (2007) A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique. Sens Actuators B 122:375–380

    Article  CAS  Google Scholar 

  • Delapierre G, Grange H, Chambaz B, Destannes L (1983) Polymer based capacitive humidity sensor—characteristics and experimental results. Sens Actuators A 4:97–104

    Article  CAS  Google Scholar 

  • Domansky K, Liu J, Wang LQ, Engelhard MH, Baskaran S (2001) Chemical sensors based on dielectric response of functionalized mesoporous silica films. J Mater Res 16:2810–2816

    Article  CAS  Google Scholar 

  • Endres HE, Drost S (1991) Optimization of the geometry of gas sensitive interdigital capacitors. Sens Actuators B 4:95–98

    Article  CAS  Google Scholar 

  • Endres HE, Hartinger R, Schwaiger M, Gmelch G, Roth M (1999) A capacitive CO sensor system with suppression of the humidity interference. Sens Actuators B 57(1–3):83–87

    Article  CAS  Google Scholar 

  • Erdamar O, Bilen B, Skarlatos Y, Aktas G, Inci MN (2007) Effects of humidity and acetone on the optical and electrical properties of porous silicon nanostructures. Physica Status Solidi C 4:601–603

    Article  CAS  Google Scholar 

  • Fürjes P, Kovács A, Dücso Cs, Ádám M, Müller B, Mescheder U (2003) Porous silicon-based humidity sensor with interdigital electrodes and internal heaters. Sens Actuators B 95:140–144

    Article  Google Scholar 

  • Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542

    Article  CAS  Google Scholar 

  • Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296

    Article  CAS  Google Scholar 

  • Igreja R, Dias CJ (2006) Dielectric response of interdigital chemocapacitors: the role of the sensitive layer thickness. Sens Actuators B 115:69–78

    Article  CAS  Google Scholar 

  • Ishihara T, Matsubara S (1998) Capacitive type gas sensors. J Electroceram 2(4):215–228

    Article  CAS  Google Scholar 

  • Ishihara T, Takita Y (1996) Property and catalysis of aluminophosphate-based molecular sieves. In: Spivey JJ (ed) Catalysis, vol 12. Royal Society of Chemistry, Great Britain, pp 21–51

    Chapter  Google Scholar 

  • Ishihara T, Kometani K, Hashida M, Takita Y (1990) Mixed oxide capacitor of BaTiO3-PbO as a new type CO2 gas sensor. Chem Lett 1990:2033–2036

    Google Scholar 

  • Ishihara T, Kometani K, Hashida M, Takita Y (1991a) Application of mixed oxide capacitor to the selective carbon dioxide sensor. J Electrochem Soc 138:173–176

    Article  CAS  Google Scholar 

  • Ishihara T, Kometani K, Mizuhara Y, Takita Y (1991b) Mixed oxide capacitor of CuO–BaSnO3 as a sensor for CO2 detection over a wide range of concentration. Chem Lett 1991:1711

    Article  Google Scholar 

  • Ishihara T, Kometani K, Mizuhara Y, Takita Y (1992a) Application of a mixed oxide capacitor to the selective carbon dioxide sensor. J Electrochem Soc 139:2881–2885

    Article  CAS  Google Scholar 

  • Ishihara T, Kometani K, Mizuhara Y, Takita Y (1992b) Mixed oxide capacitor of CuO—BaTiO3 as a new type CO2 gas sensor. J Am Ceram Soc 75:613–618

    Article  CAS  Google Scholar 

  • Ishihara T, Sato S, Takita Y (1995a) Capacitive-type sensors for the selective detection of nitrogen oxides. Sens Actuators B 24–25:392–395

    Article  Google Scholar 

  • Ishihara T, Kometani K, Nishi Y, Takita Y (1995b) Improved sensitivity of CuO-BaTiO3 capacitive-type CO2 sensor by additives. Sens Actuators B 28:49–54

    Article  CAS  Google Scholar 

  • Ishihara T, Sato S, Fukushima T, Takita Y (1996) Capacitive gas sensor of mixed oxide CoO-In2O3 to selectively detect nitrogen monoxide. J Electrochem Soc 143:1908–1914

    Article  CAS  Google Scholar 

  • James D, Scott SM, Ali Z, O’Hare WT (2005) Chemical sensors for electronic nose systems. Microchim Acta 149:1–17

    Article  CAS  Google Scholar 

  • Josse F, Lukas R, Zhou RN, Schneider S, Everhart D (1996) AC impedance-based chemical sensors for organic solvent vapors. Sens Actuators B 36:363–369

    Article  CAS  Google Scholar 

  • Kang WP, Kim CK (1993) Gas sensitivities of silicon MIS capacitors incorporated with catalyst and adsorptive oxide layers. J Electrochem Soc 140:L125–L127

    Article  CAS  Google Scholar 

  • Kang U, Wise K (2000) A high speed capacitive humidity sensor with on-chip thermal reset. IEEE Trans Electron Devices 47(4):702–710

    Article  CAS  Google Scholar 

  • Kim S-J, Jeon BH, Choi K-S, Min N-K (2000) Capacitive porous silicon sensors for measurement of low alcohol gas concentration at room temperature. Solid State Electrochem 4:363–366

    Article  CAS  Google Scholar 

  • Kitsara M, Goustouridis D, Chatzandroulis S, Beltsios K, Raptis I (2006) A lithographic polymer process sequence for chemical sensing arrays. Microelectron Eng 83:1192–1196

    Article  CAS  Google Scholar 

  • Korotcenkov G, Cho BK (2010) Porous semiconductors: advanced material for gas sensor applications. Crit Rev Solid State Mater Sci 35(1):1–37

    Article  CAS  Google Scholar 

  • Kummer AM, Hierlemann A, Baltes H (2004) Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal Chem 76:2470–2477

    Article  CAS  Google Scholar 

  • Kummer AM, Burg TP, Hierlemann A (2006) Transient signal analysis using complementary metal oxide semiconductor capacitive chemical microsensors. Anal Chem 78:279–290

    Article  CAS  Google Scholar 

  • Lang HP, Hegner M, Gerber C (2005) Cantilever array sensors. Mater Today 8:30–36

    Article  CAS  Google Scholar 

  • Laville C, Pellet C (2002) Comparison of three humidity sensors for a pulmonary function diagnosis microsystem. IEEE Sensors J 2(2):96–101

    Article  CAS  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253

    Article  CAS  Google Scholar 

  • Lee C-Y, Wu G-W, Hsieh W-J (2008) Fabrication of micro sensors on a flexible substrate. Sens Actuators A 147:173–176

    Article  CAS  Google Scholar 

  • Li Y, Vancura C, Barrettino D, Graf M, Hagleitner C, Kummer A, Zimmermann M, Kirstein K-U, Hierlemann A (2007) Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes. Sens Actuators B 126:431–440

    Article  CAS  Google Scholar 

  • Lim SH, Jaworski J, Satyanarayana S, Wang F, Raorane D, Lee S-W, Majumdar A (2007) Nanomechanical chemical sensor platform. In: Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, Bangkok, Thailand, 16–19 Jan 2007, pp 886–889

    Google Scholar 

  • Lin J, Miiller S, Obermeier E (1991) Two-dimensional and three-dimensional as basic elements for chemical sensors interdigital capacitors. Sens Actuators B 5:223–226

    Article  CAS  Google Scholar 

  • Lloyd Spetz A, Savage S (2003) Advances in FET chemical gas sensors. In: Choyke WJ, Matsunami H, Pensl G (eds) Recent major advances in SiC. Springer, Berlin, pp 879–906

    Google Scholar 

  • Lofdahl M, Utaimasin C, Carlsson A, Lundstrom I, Eriksson M (2001) Gas response dependence on gate metal morphology of field-effect devices. Sens Actuators B 80:183–192

    Article  CAS  Google Scholar 

  • Lundstrom I (1981) Hydrogen sensitive MOS structures. Part 1. Principles and applications. Sens Actuators 1:403–426

    Article  Google Scholar 

  • McCorkle DL, Warmack RJ, Patel SV, Mlsna T, Hunter SR, Ferrell TL (2005) Ethanol vapor detection in aqueous environments using micro-capacitors and dielectric polymers. Sens Actuators B 107:892–903

    Article  CAS  Google Scholar 

  • Meanna Perez JM, Freyre C (1997) A poly(ethylene terephthalate)-based humidity sensor. Sens Actuators B 42:27–30

    Article  CAS  Google Scholar 

  • Menil F, Lucat C, Debeda H (1995) The thick-film route to selective gas sensors. Sens Actuators B 24–25:415–420

    Article  Google Scholar 

  • Mlsna TE, Cemalovic S, Warburton M, Hobson ST, Mlsna DA, Patel SV (2006) Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sens Actuators B 116:192–201

    Article  CAS  Google Scholar 

  • Nahar RK, Khanna VK (1982) A study of capacitance and resistance characteristics of an Al2O3 humidity sensor. Int J Electron 52:557–567

    Article  CAS  Google Scholar 

  • Neimark AV, Ravikovitch PI (2001) Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater 44–45:697–707

    Article  Google Scholar 

  • Nordström M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G, Havsteen-Jakobsen M, Boisen A (2008) SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8:1595–1612

    Article  Google Scholar 

  • Oprea A, Bârsan N, Weimar U, Bauersfeld ML, Ebling D, Wöllenstein J (2008) Capacitive humidity sensors on flexible RFID labels. Sens Actuators B 132:404–410

    Article  CAS  Google Scholar 

  • Park S, Kang J, Park J, Mun S (2001) One-bodied humidity and temperature sensor having advanced linearity at low and high relative humidity range. Sens Actuators B 76:322–326

    Article  CAS  Google Scholar 

  • Park KK, Lee HJ, Yaralioglu GG, Ergun AS, Oralkan Ö, Kupnic M, Quate CF, Khuri-Yakub BT, Braun T, Ramseyer J-P, Lang HP, Hegner M, Gerber C, Gimzewski JK (2007) Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen. Appl Phys Lett 91:094102

    Article  Google Scholar 

  • Park KK, Lee HJ, Kupnic M, Oralkan Ö, Khuri-Yakub BT (2008) Capacitive micromachined ultrasonic transducer as a chemical sensor. In: Proceedings of the 7th IEEE conference on sensors, IEEE sensors, Lecce, Italy, 26–29 Oct 2008, pp 5–8

    Google Scholar 

  • Patel SV, Mlsna TE, Fruhberger B, Klaassen E, Cemalovic S, Baselt DR (2003) Chemicapacitive microsensors for volatile organic compound detection. Sens Actuators B 96:541–553

    Article  CAS  Google Scholar 

  • Pecora A, Maiolo L, Cuscunà M, Simeone D, Minotti A, Mariucci L, Fortunato G (2008) Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid State Electron 52:348–352

    Article  CAS  Google Scholar 

  • Rittersma ZM, Splinter A, Bödecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sens Actuators B 68:210–217

    Article  CAS  Google Scholar 

  • Rodríguez A, Amírola J, Millán M, Horrillo MC, Sayago I, García M, Gutiérrez FJ (2004) Electromechanically coupled feedback loops for microsystems. Application to volatile organic compounds (VOC) sensors. In: Proceedings of the 3rd IEEE conference on sensors, IEEE sensors, vol 1. Vienna, Austria, 24–27 Oct 2004, pp 154–157

    Google Scholar 

  • Salomonsson A, Roy S, Aulin C, Ojamae L, Kall PO, Strand M, Sanati M, Lloyd Spetz A (2005) RuO2 and Ru nanoparticles for MISiC-FET gas sensors. In: Proceedings of MSTI-Nanotech-2005 conference, vol 2, pp 269–272. http://www.nsti.org

  • Satyanarayana S, McCormick DT, Majumdar A (2006) Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Actuators B 115:494–502

    Article  CAS  Google Scholar 

  • Schoeneberg U, Hosticka BJ, Zimmer G, Maclay GJ (1990) A novel readout technique for capacitive gas sensors. Sens Actuators B 1:58–61

    Article  Google Scholar 

  • Sheppard NF, Day DR, Lee HL, Senturia SD (1982) Microdielectrometry. Sens Actuators A 2:263–274

    Article  Google Scholar 

  • Shibata H, Ito M, Asakursa M, Watanabe K (1996) A digital hygrometer using a polyimide film relative humidity sensor. IEEE Trans Instrum Meas 45(3):564–569

    Article  CAS  Google Scholar 

  • Silverthorne SV, Watson CW, Baxtor RD (1989) Characterization of a humidity sensor that incorporates a CMOS capacitance measuring circuit. Sens Actuators 19:371–383

    Article  Google Scholar 

  • Sivaramakrishnan S, Rajamani R, Pappenfus TM (2008) Electrically stretched capacitive membranes for stiffness sensing and analyte concentration measurement. Sens Actuators B 135:262–267

    Article  CAS  Google Scholar 

  • Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307:1942–1944

    Article  CAS  Google Scholar 

  • Timar-Horvath V, Juhasz L, Vass-Varnai A, Perlaky G (2008) Usage of porous Al2O3 layers for RH sensing. Microsyst Technol 14:1081–1086

    Article  CAS  Google Scholar 

  • Winquist F, Spetz A, Armgarth M, Lundstrom I (1985) Biosensors based on ammonia sensitive metal-oxide-semiconductor structures. Sens Actuators 8:91–100

    Article  CAS  Google Scholar 

  • Zamani C, Shimanoe K, Yamazoe N (2005) A new capacitive-type NO2 gas sensor combining an MIS with a solid electrolyte. Sens Actuators B 109:216–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Materials for Capacitance-Based Gas Sensors. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_16

Download citation

Publish with us

Policies and ethics