Skip to main content

Materials for Electrochemical Gas Sensors with Liquid and Polymer Electrolytes

  • Chapter
  • First Online:
Book cover Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 4960 Accesses

Abstract

Liquid and polymer-based gas sensors are low temperature devices which are capable of working at room temperature. This chapter analyzes the features of these devices and discusses the materials which can be used to make them. Detailed descriptions of liquid and polymer electrolytes, as well as the materials used as electrodes in electrochemical sensors, are included. Membranes and gas diffusion electrodes and technologies of its fabrication are also discussed. The chapter includes 2 figures, 4 tables, and 42 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bay HW, Blurton KF, Lieb HC, Oswin HG (1972) Electrochemical measurement of carbon monoxide. Intern Lab 1(5):37–41

    Google Scholar 

  • Bay HW, Blurton KF, Sedlak JM, Valentine AM (1974) Electrochemical technique for the measurement of carbon monoxide. Anal Chem 46(12):1837–1839

    Article  CAS  Google Scholar 

  • Bergman I (1968) Metallized membrane electrode: atmospheric oxygen monitoring and other applications. Nature 218:266

    Article  CAS  Google Scholar 

  • Blurton KF, Stetter JR (1978) A sensitive electrochemical detector for gas chromatography. J Chromatogr 155:35–45

    Article  CAS  Google Scholar 

  • Bonanos N (2001) Oxide-based protonic conductors: point defects and transport properties. Solid State Ion 145:265–274

    Article  CAS  Google Scholar 

  • Bontempelli G, Comisso N, Toniolo R, Schiavon G (1997) Electroanalytical sensors for nonconducting media based on electrodes supported on perfluorinated ion-exchange membranes. Electroanalysis 9:433–443

    Article  CAS  Google Scholar 

  • Cao Z, Stetter JR (1991) Amperometric gas sensors. In: Madou M, Joseph JP (eds) Opportunities for innovation: chemical and biological sensors. NIST Publication GCR 91-593-1, U.S. Department of Commerce, Gaithersburg, MD

    Google Scholar 

  • Cao Z, Buttner WJ, Stetter JR (1992) The properties and applications of amperometric gas sensors. Electroanalysis 4:253–266

    Article  CAS  Google Scholar 

  • Chang SC, Stetter JR, Cha CS (1993) Amperometric gas sensors. Talanta 40:461–477

    Article  CAS  Google Scholar 

  • Chao Y, Buttner WJ, Yao S, Stetter JR (2005) Amperometric sensor for selective and stable hydrogen measurement. Sens Actuators B 106:784–790

    Article  CAS  Google Scholar 

  • Chou J (1999) Hazardous gas monitors: a practical guide to selection, operation, and applications. McGraw-Hill Professional, New York, NY

    Google Scholar 

  • Clark LC, Wolf R, Granger D, Taylar Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    CAS  Google Scholar 

  • Dawson GA, Hauser PC, Kilmartin PA, Wright GA (2000) CO2 gas sensing at microelectrodes in nonaqueous solvents. Electroanalysis 12:105–110

    Article  CAS  Google Scholar 

  • Enea O (1987) On the electrocatalytic oxidation of methanol vapors at Au-Nafion electrodes. J Electroanal Chem 235:393–401

    Article  CAS  Google Scholar 

  • Hitchman ML (1978) Measurements of dissolved oxygen. Wiley, New York, NY

    Google Scholar 

  • Ho KC, Hung WT (2001) An amperometric NO2 gas sensor based on Pt/Nafion® electrode. Sens Actuators B 79:11–18

    Article  CAS  Google Scholar 

  • Ho KC, Liao JY, Yang CC (2005) A kinetic study for electrooxidation of NO gas at a Pt/membrane electrode-application to amperometric NO sensor. Sens Actuators B 108:820–827

    Article  CAS  Google Scholar 

  • Imaya H, Ishiji T, Takahashi K (2005) Detection properties of electrochemical acidic gas sensors using halide–halate electrolytic solutions. Sens Actuators B 108:803–807

    Article  CAS  Google Scholar 

  • Ives DJG, Janz GJ (eds) (1961) Reference electrodes: theory and practice. Academic, New York, NY

    Google Scholar 

  • Jordan LR, Hauser PC, Dawson GA (1997) Humidity and temperature effects on the response to ethylene of an amperometric sensor utilizing a gold-Nafion electrode. Electroanalysis 9:1159–1162

    Article  CAS  Google Scholar 

  • Katayama-Aramata A, Nakajima H, Fujikawa K, Kita H (1983) Metal electrodes bonded on solid polymer electrolyte membranes (SPE)—the behaviour of platinum bonded on SPE for hydrogen and oxygen electrode processes. Electrochim Acta 28:777–780

    Article  CAS  Google Scholar 

  • Kita A, Fujikawa K, Nakajima H (1984) Metal electrodes bonded on solid polymer electrolyte membranes (SPE)-II. The polarization resistance of Pt-Nafion electrode. Electrochim Acta 29:1721–1724

    Article  CAS  Google Scholar 

  • Kita H, Nakajima H (1986) Metal electrodes bonded on solid polymer electrolyte membranes (SPE)-III. CO oxidation at Au-SPE electrodes. Electrochim Acta 31:193–200

    Article  CAS  Google Scholar 

  • Knake R, Jacquinot P, Hodgson AWE, Hauser PC (2005) Amperometric sensing in the gas-phase. Anal Chim Acta 549:1–9

    Article  CAS  Google Scholar 

  • Kordesch K, Simader G (1996) Fuel cells and their applications. VCH, New York, NY

    Book  Google Scholar 

  • Korotcenkov G, Han S-D, Stetter JR (2009) Review of electrochemical hydrogen sensors. Chem Rev 109(3):1402–1433

    Article  CAS  Google Scholar 

  • Liu C-C (1996) Electrochemical sensors: microfabrication techniques. In: Taylor RF, Schultz JS (eds) Handbook of chemical and biological sensors. IOP, Bristol, Ch. 16

    Google Scholar 

  • La Conti S, Maget HJR (1971) Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres. J Electrochem Soc 118:506–510

    Article  Google Scholar 

  • Lu X, Wu S, Wang L, Su Z (2005) Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sens Actuators B 107:812–817

    Article  CAS  Google Scholar 

  • Mosley PT, Norris J, Williams DE (eds) (1991) Techniques and mechanisms in gas sensing. Adam Hilger, New York, NY

    Google Scholar 

  • Niedrach LW, Alford HR (1965) A new high-performance fuel cell employing conducting-porous-teflon electrodes and liquid electrolytes. J Electrochem Soc 112:117–124

    Article  CAS  Google Scholar 

  • Opekar F (1989) Analytical applications of metallized membrane electrodes. Electroanalysis 1:287–295

    Article  CAS  Google Scholar 

  • Opekar F, Stulik K (1999) Electrochemical sensors with solid polymer electrolytes. Anal Chim Acta 385:151–162

    Article  CAS  Google Scholar 

  • Otagawa T, Zaromb S, Stetter JR (1985) Electrochemical oxidation of methane in nonaqueous electrolytes at room temperature. J Electrochem Soc 132:2951–2957

    Article  CAS  Google Scholar 

  • Paganin VA, Ticianelli EA, Gonzalez ER (1996) Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J Appl Electrochem 26:297–304

    Article  CAS  Google Scholar 

  • Ren X, Wilson MS, Gottesfeld S (1996) High performance direct methanol polymer electrolyte fuel cells. J Electrochem Soc 143:L12–L15

    Article  CAS  Google Scholar 

  • Rosini S, Siebert E (2005) Electrochemical sensors for detection of hydrogen in air: model of the non-Nernstian potentiometric response of platinum gas diffusion electrodes. Electrochim Acta 50:2943–2953

    Article  CAS  Google Scholar 

  • Schiavon G, Zotti G, Bontempelli G (1989) Electrodes supported on ion-exchange membranes as sensors in gases and low-conductivity solvents. Anal Chim Acta 221:27–41

    Article  CAS  Google Scholar 

  • Stetter JR, Sedlak JM, Blurton KF (1977) Electrochemical gas chromatographic detection of hydrogen sulfide at ppm and ppb levels. J Chromatorg Sci 15:125–128

    Article  CAS  Google Scholar 

  • Stetter JR, Li J (2008) Amperometric gas sensors: a review. Chem Rev 108:352–366

    Article  CAS  Google Scholar 

  • Stetter JR, Korotcenkov G, Zeng X, Liu Y, Tang Y (2011) Electrochemical gas sensors: fundamentals, fabrication and parameters. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 5, Electrochemical and optical sensors. Momentum Press, New York, NY, pp 1–89

    Google Scholar 

  • Sundmacher K, Rihko-Struckmann LK, Galvita V (2005) Solid electrolyte membrane reactors: status and trends. Catal Today 104:185–199

    Article  CAS  Google Scholar 

  • Vielstich W, Lamm A, Gasteiger HA (eds) (2003) Handbook of fuel cell -fundamentals, technology and applications, vol 2. Wiley, Chichester, Part 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Materials for Electrochemical Gas Sensors with Liquid and Polymer Electrolytes. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_15

Download citation

Publish with us

Policies and ethics