Skip to main content

Materials for Piezoelectric-Based Gas Sensors

  • Chapter
  • First Online:
Book cover Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Piezoelectric-based or acoustic wave (AW) sensors such as surface acoustic wave (SAW), quartz crystal microbalance (QCM) or bulk acoustic wave (BAW), and cantilever-based devices create a specific class of gas sensors widely used in various applications. The present chapter gives detailed information about piezoelectric materials which can be used in these devices. Descriptions of materials acceptable for fabrication of both interdigital transducers (IDT) in piezoelectric-based gas sensors and high temperature AW devices are given. Materials used for forming gas sensing layers, which provide high sensitivity and selectivity to acoustic wave devices, and approaches used for miniaturization of piezoelectric sensors are also analyzed. The chapter includes 7 figures, 11 tables, and 82 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A, Dickert FL (2011) Surface acoustic wave sensors for chemical applications. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state devices. Momentum, New York, pp 447–484

    Google Scholar 

  • Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels BF, De Vos DE (2009) Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem Mater 21:2580–2582

    Article  CAS  Google Scholar 

  • Ballantine DS, Wohltjen H (1989) Surface acoustic wave devices for chemical analysis. Anal Chem 61:704–715

    Google Scholar 

  • Ballantine DS Jr, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohltjen H (1996) Acoustic wave sensors: theory, design, and physico-chemical applications. In: Levy M, Stern R (eds) Applications of modern acoustics. Academic, San Diego

    Google Scholar 

  • Ballantine DS Jr, White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic wave sensors: theory, design, and physico-chemical applications. Academic, San Diego

    Google Scholar 

  • Bein T, Brown K, Frye GC, Brinker CJ (1989) Molecular sieve sensors for selective detection at the nanogram level. J Am Chem Soc 111:7640–7641

    Article  CAS  Google Scholar 

  • Bryant A, Poirier M, Riley DL, Vetelino JF (1983) Gas detection using surface acoustic wave delay lines. Sens Actuators 4:105–111

    Article  CAS  Google Scholar 

  • Carey WP, Beebe KR, Kowalski BR, Illman DL, Hirschfeld T (1986) Selection of adsorbates for chemical sensor arrays by pattern recognition. Anal Chem 58:149–153

    Article  CAS  Google Scholar 

  • Cheeke JDN, Wang Z (1999) Acoustic wave gas sensors. Sens Actuators B 59:146–153

    Article  CAS  Google Scholar 

  • Cheremisinof PN, Ellerbusch F (eds) (1980) Carbon adsorption handbook. Science, Ann Arbor, pp 241–279

    Google Scholar 

  • Comyn J (ed) (1985) Permeation of gases and vapors in polymers. Elsevier, London

    Google Scholar 

  • Cook RL, MacDuff RC, Sammels AF (1989) Organophosphine transition metal complexes as selective surfaces for the reversible detection of sulfur dioxide with piezoelectric crystal sensors. Anal Chim Acta 217:101–109

    Article  CAS  Google Scholar 

  • D’Amico A, Verona E (1989) SAW sensors. Sens Actuators 17:55–66

    Article  Google Scholar 

  • D’Amico A, Paima A, Verona E (1982) Palladium‐surface acoustic wave interaction for hydrogen detection. Appl Phys Lett 41:300–301

    Article  Google Scholar 

  • D’Amico A, Petri A, Verardi P, Verona E (1987) NH3 surface acoustic wave gas detector. Proc IEEE Ultrason Symp 1987:633–636

    Google Scholar 

  • Ding B, Kim JH, Miyazaki Y, Shiratori SM (2004) Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens Actuators B 101:373–380

    Article  CAS  Google Scholar 

  • Drafts B (2001) Acoustic wave technology sensors. IEEE Trans Microw Theory 49:795–802

    Article  CAS  Google Scholar 

  • Edmonds TE, Hepher MJ, West TS (1988) Studies on the adsorption of nitrogen dioxide onto manganese dioxide-coated quartz piezoelectric crystals. Anal Chim Acta 207:67–75

    Article  CAS  Google Scholar 

  • Fachberger R, Bruckner G, Knoll G, Hauser R, Biniasch J, Reindl L (2004) Applicability of LiNbO3, langasite and GaPO4 in high temperature SAW sensors operating at radio frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 51:1427–1431

    Article  Google Scholar 

  • Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Myers E, Roukes ML (2011) Gas sensors based on gravimetric detection—a review. Sens Actuators B 160:804–821

    Article  CAS  Google Scholar 

  • Fechete AC, Wlodarski W, Kalantar-Zadeh K, Holland AS, Antoszewski J, Kaciulis S, Pandolfi L (2006) SAW-based gas sensors with rf sputtered InOx and PECVD SiNx films: response to H2 and O3 gases. Sens Actuators B 118:362–367

    Article  CAS  Google Scholar 

  • Ferrari V (2004) Acoustic-wave piezoelectric and pyroelectric sensors based on PZT thick films. In: Yurish SY, Gomes MTSR (eds) Smart sensors and MEMS, vol 181, NATO science series II: mathematics, physics and chemistry. Springer, New York, pp 125–154

    Chapter  Google Scholar 

  • Ferrari V, Marioli D, Taroni A, Ranucci E (2000) Multisensor array of mass microbalances for chemical detection based on resonant piezo-layers of screen-printed PZT. Sens Actuators B 68:81–87

    Article  CAS  Google Scholar 

  • Fielden PR, McCallum JJ, Stanios T, Alder JF (1984) Detection of toluene diisocyanate with a coated quartz piezoelectric crystal: part 4. A portable automatic detector with humidity correction. Anal Chim Acta 162:85–96

    Article  CAS  Google Scholar 

  • Fritze H (2011) High-temperature bulk acoustic wave sensors. Meas Sci Technol 22:012002

    Article  Google Scholar 

  • Fritze H, Tuller HL (2001) Langasite for high temperature bulk acoustic wave applications. J Appl Phys Lett 78:976–977

    Article  CAS  Google Scholar 

  • Fritze H, Schulz M, She H, Tuller HL (2006) Sensor application-related defect chemistry and electromechanical properties of langasite. Solid State Ionics 177:2313–2316

    Article  CAS  Google Scholar 

  • Grate JW, Martin SJ, White RM (1993a) Acoustic-wave microsensors. Anal Chem 65:A940–A948

    Article  Google Scholar 

  • Grate JW, Martin SJ, White RM (1993b) Acoustic-wave microsensors. Anal Chem 65:A987–A996

    Article  Google Scholar 

  • Guilbault GG, Affolter J, Tomita Y, Kolesar ES Jr (1981) Piezoelectric crystal coating for detection of organophosphorus compounds. Anal Chem 53:2057–2060

    Article  CAS  Google Scholar 

  • Harbeck M, Sen Z, Gürol I, Gümüs G, Musluoglu E, Ahsen V, Öztürk ZZ (2011) Vic-dioximes: a new class of sensitive materials for chemical gas sensing. Sens Actuators B 156:673–679

    Article  CAS  Google Scholar 

  • Ippolito SJ, Trinchi A, Powell DA, Wlodarski W (2009) Acoustic wave gas and vapor sensors. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York, pp 261–304

    Google Scholar 

  • Jakubik WP, Urbaczyk MW, Kochowski S, Bodzenta J (2002) Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sens Actuators B 82:265–271

    Article  CAS  Google Scholar 

  • Kholkin AL, Kiselev DA, Kholkine LA, Safari A (2009) Smart ferroelectric ceramics for transducer applications, Chapter 9.1. In: Schwartz M (ed) Smart materials. CRC, Boca Raton

    Google Scholar 

  • King WH (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739

    Article  CAS  Google Scholar 

  • Korotcenkov G (ed) (2011) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state devices. Momentum, New York

    Google Scholar 

  • Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  • Kurosawa S, Kamo N, Matsui D, Kobatake Y (1990) Gas sorption to plasma-polymerized copper phthalocyanine film formed on a piezoelectric crystal. Anal Chem 62:353–359

    Article  CAS  Google Scholar 

  • Lai CSI, Moody GJ, Thomas JDR (1986) Piezoelectric quartz crystal detection of ammonia using pyridoxine hydrochloride supported on a polyethoxylate matrix. Analyst 111:511–515

    Article  CAS  Google Scholar 

  • Lakin KM (2005) Thin film resonator technology. IEEE Trans Ultrason Ferroelectr 52:707–716

    Article  Google Scholar 

  • Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58:31–36

    Article  CAS  Google Scholar 

  • Lee L-H (1991) Fundamentals of adhesion. Plenum, New York

    Book  Google Scholar 

  • Lee JH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20:269–275

    Article  CAS  Google Scholar 

  • Lee Y, Lim G, Moon W (2006) A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique. Sens Actuators A 130–131:105–110

    Google Scholar 

  • Lozano J, Fernandez MJ, Fontecha JL, Aleixandre M, Santos JP, Sayago I, Arroyo T, Cabellos JM, Gutierrez FJ, Horrillo MC (2006) Wine classification with a zinc oxide SAW sensor array. Sens Actuators B 120:166–171

    Article  CAS  Google Scholar 

  • Martin SJ, Schweizer KS, Schwartz SS, Gunshor RL (1984) Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator. Proc IEEE Ultrason Symp 1984:207–213

    Google Scholar 

  • Martin SJ, Ricco AJ, Ginley DS, Zipperian TE (1987) Isothermal measurements and thermal desorption of organic vapors using SAW devices. IEEE Trans Ultrason Ferroelectr Freq Control 34:142–147

    Article  CAS  Google Scholar 

  • Martin SJ, Frye GC, Spates JJ, Butler MA (1996) Gas sensing with acoustic devices. Proc IEEE Ultrason Symp 1996:423–434

    Google Scholar 

  • Monreal FJ, Marl CM (1987) The use of polymer materials as sensitive elements in physical and chemical sensors. Sens Actuators 12:129–144

    Article  Google Scholar 

  • Mortet V, Williams OA, Haenen K (2008) Diamond: a material for acoustic devices. Phys Stat Sol 205(5):1009–1020

    Article  CAS  Google Scholar 

  • Nieuwenhuizen MS, Nederlof AJ (1988) Surface acoustic wave gas sensor for nitrogen dioxide using phthalocyanines as chemical interfaces. Effects of nitric oxide, halogen gases, and prolonged heat treatment. Anal Chem 60:236–240

    Article  CAS  Google Scholar 

  • Özgür Ü, Alivov Ya I, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Article  Google Scholar 

  • Pribil R, Bilkova E (1992) The use of a piezoelectric crystal to determine sulphur dioxide in gases. Talanta 39:361–366

    Article  CAS  Google Scholar 

  • Ricco AJ, Martin SJ (1992) Thin metal film characterization and chemical sensors: monitoring electronic conductivity, mass loading and mechanical properties with surface acoustic wave devices. Thin Solid Films 206:94–101

    Article  Google Scholar 

  • Ricco AJ, Martin SJ, Zipperian TE (1985) Surface acoustic wave gas sensor based on film conductivity changes. Sens Actuators 8:319–333

    Article  CAS  Google Scholar 

  • Richter D, Fritze H, Schneider T, Hauptmann P, Bauersfeld N, Kramer KD, Wiesner K, Fleischer M, Karle G, Schubert A (2006) Integrated high temperature gas sensor system based on bulk acoustic wave resonators. Sens Actuators B 118:466–471

    Article  CAS  Google Scholar 

  • Rosen CZ, Hiremath BV, Newnham R (eds) (1992) Piezoelectricity. Springer-Verlag, New York

    Google Scholar 

  • Roy S, Basu S (2002) Improved zinc oxide film for gas sensor applications. Bull Mater Sci 25:513–515

    Article  CAS  Google Scholar 

  • Sanchez-Pedreno JAO, Drew PKP, Alder JF (1986) The investigation of coating materials for the detection of nitrobenzene with coated quartz piezoelectric crystals. Anal Chim Acta 182:285–291

    Article  CAS  Google Scholar 

  • Scheide EP, Taylor JK (1974) Piezoelectric sensor for mercury in air. Environ Sci Technol 8:1087–1091

    Article  Google Scholar 

  • Schulz M, Sauerwald J, Richter D, Fritze H (2009) Electromechanical properties and defect chemistry of high-temperature piezoelectric materials. Ionics 15:157–161

    Article  CAS  Google Scholar 

  • Schwartz RW, Ballato J, Haertling GH (2004) Piezoelectric and electro-optic ceramics. In: Buchanan RC (ed) Ceramic materials for electronics. Dekker, New York, pp 207–315

    Google Scholar 

  • Şen Z, Gürol I, Gümüş G, Musluoğlu E, Harbeck M, Ahsen V, Öztürk ZZ (2010) Organophosphate sensing with vic-dioximes using QCM sensors. IEEE SENSORS 2010 Conference, pp 2127–2130

    Google Scholar 

  • Setter N (ed) (2002) Piezoelectric materials in devices. EPFL Swiss Federal Institute of Technology, Lausanne

    Google Scholar 

  • Smith RT, Welsh FS (1971) Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J Appl Phys 42:2219–2230

    Article  CAS  Google Scholar 

  • Smythe R, Helmbold RC, Hague GE, Snow KA (2000) Langasite, langanite, and langatate bulk-wave Y-cut resonators. IEEE Trans Ultrason Ferroelectr Freq Control 47:355–360

    Article  CAS  Google Scholar 

  • Suleiman AA, Guilbault GG (1984a) Mercury displacement in the determination of sulfur dioxide with a piezoelectric crystal detector. Anal Chem 56:2964–2966

    Article  CAS  Google Scholar 

  • Suleiman A, Guilbault GG (1984b) A coated piezoelectric crystal detector for phosgene. Anal Chim Acta 162:97–102

    Article  CAS  Google Scholar 

  • Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20:092001–092030

    Article  Google Scholar 

  • Tuller HL (2003) Defect engineering: design tools for solid state electrochemical devices. Electrochim Acta 48:2879–2887

    Article  CAS  Google Scholar 

  • Uchino K, Ito Y (2009) Smart ceramics: transducers, sensors, and actuators, Chapter 9.2. In: Schwartz M (ed) Smart materials. CRC, Boca Raton

    Google Scholar 

  • Vashist SK, Korotcenkov G (2011) Microcantilever-based chemical sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state devices. Momentum, New York, USA, pp 321–376

    Google Scholar 

  • Vellekoop MJ (1998) Acoustic wave sensors and their technology. Ultrasonics 36:7–14

    Article  Google Scholar 

  • Voinova M, Jonson M (2011) The quartz crystal microbalance. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state devices. Momentum, New York, pp 377–445

    Google Scholar 

  • Wang QM, Shen DM, Bulow M, Lau ML, Deng SG, Fitch FR, Lemcoff NO, Semanscin J (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230

    Article  CAS  Google Scholar 

  • Wang W, He S, Li S, Pan Y (2006) Enhanced sensitivity of SAW gas sensor based on high frequency stability oscillator. Smart Mater Struct 15:1525–1530

    Article  Google Scholar 

  • Weber J, Albers WM, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M (2006) Shear mode FBARs as highly sensitive liquid biosensors. Sens Actuators A 128:84–88

    Article  CAS  Google Scholar 

  • Wohltjen H (1984) Chemical microsensors and microinstrumentation. Anal Chem 56:87A–103A

    CAS  Google Scholar 

  • Wood GO, Moyer ES (1991) A review and comparison of adsorption isotherm equations used to correlate and predict organic vapor cartridge capacities. Am Ind Hyg Assoc J 52:235–242

    Article  CAS  Google Scholar 

  • Yanagitani T, Kiuchi M, Matsukawa M, Watanabe Y (2007) Characteristics of pure-shear mode BAW resonators consisting of (1120) textured ZnO films. IEEE Trans Ultrason Ferroelectr Freq Control 54:1680–1686

    Article  Google Scholar 

  • Ye ZG (ed) (2008) Handbook of advanced dielectric piezoelectric and ferroelectric mater: synthesis characterization and applications. Woodhead, Cambridge

    Google Scholar 

  • Zhang J, Hu J, Zhu ZQ, Gong H, O’Shea SJ (2004) Quartz crystal microbalance coated with solgel-derived indium-tin oxide thin films as gas sensor for NO detection. Colloid Surf A 236:23–30

    Article  CAS  Google Scholar 

  • Zhang YS, Yu K, Xu RL, Jiang DS, Luo LQ, Zhu ZQ (2005) Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens Actuators A 120:142–146

    Article  CAS  Google Scholar 

  • Zhang S, Yu F, Xia R, Fei Y, Frantz E, Zhao X, Yuan D, Chai BHT, Snyder D, Shrout TR (2011) High-temperature ReCOB piezocrystals: recent developments. J Crystal Growth 318:884–889

    Article  CAS  Google Scholar 

  • Zhou X, Zhang J, Jiang T, Wang X, Zhu Z (2007) Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sens Actuators A 135:209–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Materials for Piezoelectric-Based Gas Sensors. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_13

Download citation

Publish with us

Policies and ethics