• Martin J. Gander
Part of the Contemporary Mathematicians book series (CM)


Here, five “miscellaneous” papers of Walter Gautschi are commented on, [GA96, GA124, GA125, GA175, GA197], preceded by some personal reminiscences.


Gauss Quadrature Convergent Series Symmetric Positive Definite Matrice Gauss Quadrature Rule Partial Fraction Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Philip J. Davis. Spirals: from Theodorus to chaos With contributions by Walter Gautschi and Arieh Iserles. A K Peters, Wellesley, MA, 1993. x+237 pp. ISBN: 1-56881-010-5.Google Scholar
  2. [2]
    Bernard N. Flury and Gregory Constantine. The F-G diagonalization algorithm. Algorithm AS 211. Applied Statistics 34:177–183, 1985CrossRefGoogle Scholar
  3. [3]
    Martin J. Gander and Alan H. Karp. Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quantitative Spectroscopy Radiative Transfer, 68(2):213–223, 2001.CrossRefGoogle Scholar
  4. [4]
    Edmund Hlawka. Gleichverteilung und Quadratwurzelschnecke. Monatsh. Math., 89(1):19–44, 1980. (Excerpted English translation in [1, pp. 157-167].)Google Scholar
  5. [5]
    A. Kuznetsov. Asymptotic approximations to the Hardy–Littlewood function. J. Comput. Appl. Math., 237:603–613, 2013.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Jörg Waldvogel. Analytic continuation of the Theodorus spiral. joerg.waldvogel@ Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Martin J. Gander
    • 1
  1. 1.Université de Genève Section de MathématiquesGenèveSwitzerland

Personalised recommendations