• Martin J. Gander
Part of the Contemporary Mathematicians book series (CM)


Here, five “miscellaneous” papers of Walter Gautschi are commented on, [GA96, GA124, GA125, GA175, GA197], preceded by some personal reminiscences.




  1. [1]
    Philip J. Davis. Spirals: from Theodorus to chaos With contributions by Walter Gautschi and Arieh Iserles. A K Peters, Wellesley, MA, 1993. x+237 pp. ISBN: 1-56881-010-5.Google Scholar
  2. [2]
    Bernard N. Flury and Gregory Constantine. The F-G diagonalization algorithm. Algorithm AS 211. Applied Statistics 34:177–183, 1985CrossRefGoogle Scholar
  3. [3]
    Martin J. Gander and Alan H. Karp. Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quantitative Spectroscopy Radiative Transfer, 68(2):213–223, 2001.CrossRefGoogle Scholar
  4. [4]
    Edmund Hlawka. Gleichverteilung und Quadratwurzelschnecke. Monatsh. Math., 89(1):19–44, 1980. (Excerpted English translation in [1, pp. 157-167].)Google Scholar
  5. [5]
    A. Kuznetsov. Asymptotic approximations to the Hardy–Littlewood function. J. Comput. Appl. Math., 237:603–613, 2013.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Jörg Waldvogel. Analytic continuation of the Theodorus spiral. joerg.waldvogel@ sam.math.ethz.ch Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Martin J. Gander
    • 1
  1. 1.Université de Genève Section de MathématiquesGenèveSwitzerland

Personalised recommendations