Advertisement

Genes, Memes, Culture, and Psychosomatic Medicine: An Integrative Model

  • Hoyle LeighEmail author
Chapter

Abstract

The brain evolved as a specialized organ dedicated to processing information. Information is stored as memory, which may be a result of learning, or may be intrinsic, derived from genes. The evolution of the brain facilitated learning, survival, reproduction, and further enlargement of the brain. Learning through trial and error created information that facilitated individual and species survival, but the information contained in the memories died with the organism until the brain developed imitation as a learning tool [1].

Keywords

Irritable Bowel Syndrome Deep Brain Stimulation Irritable Bowel Syndrome Patient Short Allele Darwinian Natural Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dawkins, R. (1976). The selfish gene. New York: Oxford University Press. 224pp.Google Scholar
  2. 2.
    Kandel, E. R. (2006). In search of memory: The emergence of a new science of mind (1st ed.). New York: WW Norton & Co. 510pp.Google Scholar
  3. 3.
    Yang, G., Tang, Z., Zhang, Z., et al. (2007). A flexible annealing chaotic neural network to maximum clique problem. International Journal of Neural Systems, 17, 183–192.PubMedCrossRefGoogle Scholar
  4. 4.
    Lin, L., Osan, R., & Tsien, J. Z. (2006). Organizing principles of real-time memory encoding: Neural clique assemblies and universal neural codes. Trends in Neurosciences, 29, 48–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books. 371pp.Google Scholar
  6. 6.
    Blackmore, S. J. (1999). The meme machine. Oxford/New York: Oxford University Press. 264pp.Google Scholar
  7. 7.
    Lotrich, F. E., & Pollock, B. G. (2004). Meta-analysis of serotonin transporter polymorphisms and affective disorders. Psychiatric Genetics, 14, 121–129.PubMedCrossRefGoogle Scholar
  8. 8.
    Hu, S., Brody, C. L., Fisher, C., et al. (2000). Interaction between the serotonin transporter gene and neuroticism in cigarette smoking behavior. Molecular Psychiatry, 5, 181–188.PubMedCrossRefGoogle Scholar
  9. 9.
    Lerman, C., Carporaso, N. E., Audrein, J., et al. (2000). Interacting effects of the serotonin transporter gene and neuroticism in smoking practices and nicotine dependence. Molecular Psychiatry, 5, 189–192.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeo, A., Boyd, P., Lumsden, S., et al. (2004). Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women. Gut, 53, 1452–1458.PubMedCrossRefGoogle Scholar
  11. 11.
    Caspi, A., Hariri, A. R., Holmes, A., et al. (2000). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. The American Journal of Psychiatry, 167, 509–527.CrossRefGoogle Scholar
  12. 12.
    Sugden, K., Arseneault, L., Harrington, H., et al. (2010). Serotonin transporter gene moderates the development of emotional problems among children following bullying victimization. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 830–840.PubMedCrossRefGoogle Scholar
  13. 13.
    Ross, S. E. (1999). “Memes” as infectious agents in psychosomatic illness. Annals of Internal Medicine, 131, 867–871.PubMedCrossRefGoogle Scholar
  14. 14.
    Welch, M. (1971). Hypoglycemia. Ladies Home Journal, 88, 98–103.Google Scholar
  15. 15.
    McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873–904.PubMedCrossRefGoogle Scholar
  16. 16.
    McEwen, B. S., & Milner, T. A. (2007). Hippocampal formation: Shedding light on the influence of sex and stress on the brain. Brain Research Reviews, 55, 343–355.PubMedCrossRefGoogle Scholar
  17. 17.
    Gould, E., McEwen, B. S., Tanapat, P., et al. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. Journal of Neuroscience, 17, 2492–2498.PubMedGoogle Scholar
  18. 18.
    Benedetti, F., Mayberg, H. S., Wager, T. J., et al. (2005). Neurobiological mechanisms of the placebo effect. Journal of Neuroscience, 25, 10390–10402.PubMedCrossRefGoogle Scholar
  19. 19.
    Stein, D. J., & Mayberg, H. (2005). Placebo: The best pill of all. CNS Spectrums, 10, 440–442.PubMedGoogle Scholar
  20. 20.
    Mayberg, H. S., Silva, J. L., Brannan, S. K., et al. (2002). The functional neuroanatomy of the placebo effect. The American Journal of Psychiatry, 159, 728–737.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaptchuk, T. J., Friedlander, E., Kelley, J. M., et al. (2002). Placebos without deception: A randomized controlled trial in irritable bowel syndrome. PLoS One, 5, e15591.CrossRefGoogle Scholar
  22. 22.
    Bailenson, J. N. (2006). Transformed social interaction in collaborative virtual environments. In P. Messaris & L. Humphreys (Eds.), Digital media: Transformations in human communication (pp. 255–264). New York: Peter Lang.Google Scholar
  23. 23.
    Bailenson, J. N., Yee, N., Blascovich, J., et al. (2008). The use of immersive virtual reality in the learning sciences: Digital transformations of teachers, students, and social context. Journal of the Learning Sciences, 17, 102–141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of CaliforniaSan FranciscoUSA
  2. 2.UCSF FresnoFresnoUSA

Personalised recommendations