Stress-Induced Cardiomyopathy: Mechanism and Clinical Aspects

  • Jun-Won LeeEmail author
  • Byung-il William Choi


The heart has been used as a classic symbol to represent emotion from ancient times. For example, heartbreak or heartache is an informal expression used when we feel pain due to emotional events such as sorrow, grief, sense of loss, anger, anxiety, and panic. In Korea, the word “hwabyung” means “anger” or “fire” disease [1]. The most common symptoms are chest tightness, dyspnea, and heat sensation, and patients with this culture-related anger syndrome often pound their chest with fists to relieve the symptoms. Predisposing factors of hwabyung are known to be related to psychological stressors. Psychological stressors need to be considered an important issue, especially in cardiovascular disease [2]. Depression is an established risk factor for coronary heart disease [3]. Stress-induced cardiomyopathy (SICM) is currently regarded as a suitable model of cardiovascular psychophysiology. This chapter discusses the mechanism and clinical aspects of SICM.


Late Gadolinium Enhancement Cardiogenic Shock Leave Ventricular Outflow Tract Posterior Reversible Encephalopathy Syndrome Washout Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Min, S. K. (2008). Clinical correlates of hwa-byung and a proposal for a new anger disorder. Psychiatry Investigation, 5, 125–141.PubMedCrossRefGoogle Scholar
  2. 2.
    Hjemdahl, P., Rosengren, A., & Steptoe, A. (2011). Stress and cardiovascular disease. New York: Springer.Google Scholar
  3. 3.
    Kent, L. K., & Shapiro, P. A. (2009). Depression and related psychological factors in heart disease. Harvard Review of Psychiatry, 17, 377–388.PubMedCrossRefGoogle Scholar
  4. 4.
    Cebelin, M. S., & Hirsch, C. S. (1980). Human stress cardiomyopathy. Myocardial lesions in victims of homicidal assaults without internal injuries. Human Pathology, 11, 123–132.PubMedCrossRefGoogle Scholar
  5. 5.
    Ryan, T. J., & Fallon, J. T. (1986). Case reports of the Massachusetts general hospital. Weekly clinicopathological exercises. Case 18–1986. A 44-year-old woman with substernal pain and pulmonary edema after severe emotional stress. The New England Journal of Medicine, 314, 1240–1247.CrossRefGoogle Scholar
  6. 6.
    Pollick, C., Cujec, B., Parker, S., et al. (1988). Left ventricular wall motion abnormalities in subarachnoid hemorrhage: An echocardiographic study. Journal of the American College of Cardiology, 12, 600–605.PubMedCrossRefGoogle Scholar
  7. 7.
    Iga, K., Gen, H., Tomonaga, G., et al. (1989). Reversible left ventricular wall motion impairment caused by pheochromocytoma-a case report. Japanese Circulation Journal, 53, 813–818.PubMedCrossRefGoogle Scholar
  8. 8.
    Sato, H., Tateishi, H., & Uchida, T. (1990). Takotsubo-type cardiomyopathy due to multivessel spasm. In K. Kodama, K. Haze, & M. Hon (Eds.), Clinical aspect of myocardial injury from ischemia to heart failure. Tokyo: Kagaku Hyoronsha.Google Scholar
  9. 9.
    Pavin, D., Le Breton, H., & Daubert, C. (1997). Human stress cardiomyopathy mimicking acute myocardial syndrome. Heart, 78, 509–511.PubMedGoogle Scholar
  10. 10.
    Rockman, H. A., Koch, W. J., & Lefkowitz, R. J. (1997). Cardiac function in genetically engineered mice with altered adrenergic receptor signaling. American Journal of Physiology, 272, H1553–H1559.PubMedGoogle Scholar
  11. 11.
    Sharkey, S. W., Maron, B. J., Nelson, P., et al. (2009). Adrenergic receptor polymorphisms in patients with stress (tako-tsubo) cardiomyopathy. Journal of Cardiology, 53, 53–57.PubMedCrossRefGoogle Scholar
  12. 12.
    Izumi, Y. (2010). New model of Takotsubo-like left ventricular dysfunction in cynomolgus monkey. Nihon Yakurigaku Zasshi, 136, 103–106.PubMedCrossRefGoogle Scholar
  13. 13.
    Vriz, O., Minisini, R., Citro, R., et al. (2011). Analysis of beta1 and beta2-adrenergic receptors polymorphism in patients with apical ballooning cardiomyopathy. Acta Cardiologica, 66, 787–790.PubMedGoogle Scholar
  14. 14.
    Ueyama, T., Yamamoto, Y., Ueda, K., et al. (2011). Cardiac and vascular gene profiles in an animal model of takotsubo cardiomyopathy. Heart and Vessels, 26, 321–327.PubMedCrossRefGoogle Scholar
  15. 15.
    Le Ven, F., Pennec, P. Y., Timsit, S., et al. (2011). Takotsubo syndrome associated with seizures: An underestimated cause of sudden death in epilepsy? International Journal of Cardiology, 146, 475–479.PubMedCrossRefGoogle Scholar
  16. 16.
    Stöllberger, C., Wegner, C., & Finsterer, J. (2011). Seizure-associated Takotsubo cardiomyopathy. Epilepsia, 52, e160–e167.PubMedCrossRefGoogle Scholar
  17. 17.
    Sommers, M. R., Madhavan, M., Chokka, R. G., et al. (2012). Coincidence of apical ballooning syndrome (tako-tsubo/stress cardiomyopathy) and posterior reversible encephalopathy syndrome: Potential common substrate and pathophysiology? Journal of Cardiac Failure, 18, 120–125.CrossRefGoogle Scholar
  18. 18.
    Prasad, A., Lerman, A., & Rihal, C. S. (2008). Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): A mimic of acute myocardial infarction. American Heart Journal, 155, 408–417.PubMedCrossRefGoogle Scholar
  19. 19.
    Bybee, K. A., Kara, T., Prasad, A., et al. (2004). Systematic review: Transient left ventricular apical ballooning: A syndrome that mimics ST-segment elevation myocardial infarction. Annals of Internal Medicine, 141, 858–865.PubMedCrossRefGoogle Scholar
  20. 20.
    Park, J. H., Kang, S. J., Song, J. K., et al. (2005). Left ventricular apical ballooning due to severe physical stress in patients admitted to the medical ICU. Chest, 128, 296–302.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee, J. W., Kim, J. Y., Youn, Y. J., et al. (2010). Clinical characteristics and prognostic factors of stress-induced cardiomyopathy. Korean Circulation Journal, 40, 277–282.PubMedCrossRefGoogle Scholar
  22. 22.
    Greco, C. A., De Rito, V., Petracca, M., et al. (2011). Takotsubo syndrome in a newborn. Journal of the American Society of Echocardiography, 24(471), e5–e7.PubMedGoogle Scholar
  23. 23.
    Akashi, Y. J., Nef, H. M., Möllmann, H., et al. (2010). Stress cardiomyopathy. Annual Review of Medicine, 61, 271–286.PubMedCrossRefGoogle Scholar
  24. 24.
    Madhavan, M., Rihal, C. S., Lerman, A., et al. (2011). Acute heart failure in apical ballooning syndrome (Takotsubo/stress cardiomyopathy): Clinical correlates and Mayo clinic risk score. Journal of the American College of Cardiology, 57, 1400–1401.PubMedCrossRefGoogle Scholar
  25. 25.
    Gianni, M., Dentali, F., Grandi, A. M., et al. (2006). Apical ballooning syndrome or takotsubo cardiomyopathy: A systematic review. European Heart Journal, 27, 1523–1529.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee, P. H., Song, J. K., Sun, B. J., et al. (2010). Outcomes of patients with stress-induced cardiomyopathy diagnosed by echocardiography in a tertiary referral hospital. Journal of the American Society of Echocardiography, 23, 766–771.PubMedCrossRefGoogle Scholar
  27. 27.
    Madhavan, M., Borlaug, B. A., Lerman, A., et al. (2009). Stress hormone and circulating biomarker profile of apical ballooning syndrome (Takotsubo cardiomyopathy): Insights into the clinical significance of B-type natriuretic peptide and troponin levels. Heart, 95, 1436–1441.PubMedCrossRefGoogle Scholar
  28. 28.
    Ahmed, K. A., Madhavan, M., & Prasad, A. (2012). Brain natriuretic peptide in apical ballooning syndrome (Takotsubo/stress cardiomyopathy): comparison with acute myocardial infarction. Coronary Artery Disease, 23, 259–264.PubMedCrossRefGoogle Scholar
  29. 29.
    Morel, O., Sauer, F., Imperiale, A., et al. (2009). Importance of inflammation and neurohumoral activation in Takotsubo cardiomyopathy. Journal of Cardiac Failure, 15, 206–213.PubMedCrossRefGoogle Scholar
  30. 30.
    Balkin, D. M., & Cohen, L. S. (2011). Takotsubo syndrome. Coronary Artery Disease, 22, 206–214.PubMedCrossRefGoogle Scholar
  31. 31.
    Zeb, M., Sambu, N., Scott, P., et al. (2011). Takotsubo cardiomyopathy: A diagnostic challenge. Postgraduate Medical Journal, 87, 51–59.PubMedCrossRefGoogle Scholar
  32. 32.
    Takashio, S., Yamamuro, M., Kojima, S., et al. (2012). Usefulness of sum of ST-segment elevation on electrocardiograms (limb leads) for predicting in-hospital complications in patients with stress (Takotsubo) cardiomyopathy. American Journal of Cardiology, 109, 1651–1656.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, J. W., & Kim, J. Y. (2011). Stress-induced cardiomyopathy: The role of echocardiography. Journal of Cardiovascular Ultrasound, 19, 7–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Sharkey, S. W., Winderburg, D. C., Lesser, J. R., et al. (2010). Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. Journal of the American College of Cardiology, 55, 333–341.PubMedCrossRefGoogle Scholar
  35. 35.
    Heggemann, F., Weiss, C., Hamm, K., et al. (2009). Global and regional myocardial function quantification by two-dimensional strain in Takotsubo cardiomyopathy. European Journal of Echocardiography, 10, 760–764.PubMedCrossRefGoogle Scholar
  36. 36.
    El Mahnoud, R., Mansencal, N., Pilliere, R., et al. (2008). Prevalence and characteristics of left ventricular outflow tract obstruction in Tako-Tsubo syndrome. American Heart Journal, 156, 543–548.CrossRefGoogle Scholar
  37. 37.
    Merli, E., Sutcliffe, S., Gori, M., et al. (2006). Tako-Tsubo cardiomyopathy: New insights into the possible underlying pathophysiology. European Journal of Echocardiography, 7, 53–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Parodi, G., Del Pace, S., Salvadori, C., et al. (2007). Left ventricular apical ballooning syndrome as a novel cause of acute mitral regurgitation. Journal of the American College of Cardiology, 50, 647–649.PubMedCrossRefGoogle Scholar
  39. 39.
    Haghi, D., Rohm, S., Suselbeck, T., et al. (2010). Incidence and clinical significance of mitral regurgitation in Takotsubo cardiomyopathy. Clinical Research in Cardiology, 99, 93–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Elesber, A. A., Prasad, A., Bybee, K. A., et al. (2006). Transient cardiac apical ballooning syndrome: Prevalence and clinical implications of right ventricular involvement. Journal of the American College of Cardiology, 47, 1082–1083.PubMedCrossRefGoogle Scholar
  41. 41.
    Haghi, D., Papavassiliu, T., Heggemann, F., et al. (2008). Incidence and clinical significance of left ventricular thrombus in tako-tsubo cardiomyopathy assessed with echocardiography. QJM, 101, 381–386.PubMedCrossRefGoogle Scholar
  42. 42.
    de Gregorio, C., Grimaldi, P., & Lentini, C. (2008). Left ventricular thrombus formation and cardioembolic complications in patients with Takotsubo-like syndrome: A systematic review. International Journal of Cardiology, 131, 18–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Winchester, D. E., Ragosta, M., & Taylor, A. M. (2008). Concurrence of angiographic coronary artery disease in patients with apical ballooning syndrome (tako-tsubo cardiomyopathy). Catheterization and Cardiovascular Interventions, 72, 612–616.PubMedCrossRefGoogle Scholar
  44. 44.
    Bandorski, D., Braun, O., Kramer, W., et al. (2008). Coincidence of coronary artery disease and takotsubo cardiomyopathy in a 72-year-old female patient. Medizinische Klinik (Munich, Germany), 103, 665–669.CrossRefGoogle Scholar
  45. 45.
    Gaibazzi, N., Ugo, F., Vignali, L., et al. (2009). Tako-Tsubo cardiomyopathy with coronary artery stenosis: A case-series challenging the original definition. International Journal of Cardiology, 133, 205–212.PubMedCrossRefGoogle Scholar
  46. 46.
    Parker, J. A., Amerini, A. L., Autschbach, R., et al. (2012). Takotsubo cardiomyopathy with concurrent multivessel obstructive coronary artery disease: Proposition for a new clinical entity and first case surgical experience. Interactive Cardiovascular and Thoracic Surgery, 14, 108–109.PubMedCrossRefGoogle Scholar
  47. 47.
    Avegliano, G., Huguet, M., Costabel, J. P., et al. (2011). Morphologic pattern of late gadolinium enhancement in Takotsubo cardiomyopathy detected by early cardiovascular magnetic resonance. Clinical Cardiology, 34, 178–182.PubMedCrossRefGoogle Scholar
  48. 48.
    Naruse, Y., Sato, A., Kasahara, K., et al. (2011). The clinical impact of late gadolinium enhancement in Takotsubo cardiomyopathy: Serial analysis of cardiovascular magnetic resonance images. Journal of Cardiovascular Magnetic Resonance, 13, 67.PubMedCrossRefGoogle Scholar
  49. 49.
    Skovgaard, D., Holmvang, L., Bang, L. E., et al. (2010). Imaging of Takotsubo cardiomyopathy. Clinical Nuclear Medicine, 35, 967–971.PubMedCrossRefGoogle Scholar
  50. 50.
    Perrone-Filardi, P., Paolillo, S., Dellegrottaglie, S., et al. (2011). Assessment of cardiac sympathetic activity by MIBG imaging in patients with heart failure: a clinical appraisal. Heart, 97, 1828–1833.PubMedCrossRefGoogle Scholar
  51. 51.
    Carrió, I., Cowie, M. R., Yamazaki, J., et al. (2010). Cardiac sympathetic imaging with mIBG in heart failure. JACC. Cardiovascular Imaging, 3, 92–100.PubMedCrossRefGoogle Scholar
  52. 52.
    Akashi, Y. J., Nakazawa, K., Sakakibara, M., et al. (2004). 123I-MIBG myocardial scintigraphy in patients with “takotsubo” cardiomyopathy. Journal of Nuclear Medicine, 45, 1121–1127.PubMedGoogle Scholar
  53. 53.
    Palla, A. R., Dande, A. S., Petrini, J., et al. (2012). Pretreatment with low-dose scintigraphy in patients with y does not affect severity of Takotsubo cardiomyopathy. Clinical Cardiology. doi: 10.1002/clc.21983.PubMedGoogle Scholar
  54. 54.
    Akashi, Y. J., Nakazawa, K., Sakakibara, M., et al. (2003). The clinical features of takotsubo cardiomyopathy. QJM, 96, 563–573.PubMedCrossRefGoogle Scholar
  55. 55.
    Wittstein, I. S., Thiemann, D. R., Lima, J. A., et al. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. The New England Journal of Medicine, 352, 539–548.PubMedCrossRefGoogle Scholar
  56. 56.
    Meierkord, H., Shorvon, S., & Lightman, S. L. (1994). Plasma concentrations of prolactin, noradrenaline, vasopressin and oxytocin during and after a prolonged epileptic seizure. Acta Neurologica Scandinavica, 90, 73–77.PubMedCrossRefGoogle Scholar
  57. 57.
    Simon, R. P., Aminoff, M. J., & Benowitz, N. L. (1984). Changes in plasma catecholamines after tonic-clonic seizures. Neurology, 34, 255–257.PubMedCrossRefGoogle Scholar
  58. 58.
    Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews. Endocrinology, 5, 374–381.PubMedCrossRefGoogle Scholar
  59. 59.
    Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. The Journal of the American Medical Association, 267, 1244–1252.CrossRefGoogle Scholar
  60. 60.
    Castiglioni, A. (1947). Chapter 18. In E. B. Krumbhaar (Ed.), A history of medicine. New York: Knopf.Google Scholar
  61. 61.
    Dunn, A. J., & Berridge, C. W. (1990). Is corticotrophin-releasing factor a mediator of stress responses? Annals of the New York Academy of Sciences, 579, 183–191.PubMedCrossRefGoogle Scholar
  62. 62.
    Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211–223.PubMedCrossRefGoogle Scholar
  63. 63.
    Amaral, D. G., & Sinnamon, H. M. (1977). The locus coeruleus: Neurobiology of a central noradrenergic nucleus. Progress in Neurobiology, 9, 147–196.PubMedCrossRefGoogle Scholar
  64. 64.
    Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10, 397–409.PubMedCrossRefGoogle Scholar
  65. 65.
    Cannon, W. B. (1915). Bodily changes in pain, hunger, fear and rage. New York: D. Appleton & Co.Google Scholar
  66. 66.
    Scott, I. U., & Gutterman, D. D. (1995). Pheochromocytoma with reversible focal cardiac dysfunction. American Heart Journal, 130, 909–911.PubMedCrossRefGoogle Scholar
  67. 67.
    Rona, G., Boutet, M., & Huttner, I. (1975). Membrane permeability alterations as manifestation of early cardiac muscle cell injury. Recent Advances in Studies on Cardiac Structure and Metabolism, 6, 439–451.PubMedGoogle Scholar
  68. 68.
    Boutet, M., Hüttner, I., & Rona, G. (1976). Permeability alteration of sarcolemmal membrane in catecholamine-induced cardiac muscle cell injury. In vivo studies with fine structural diffusion tracer horse radish peroxidase. Laboratory Investigation, 34, 482–488.PubMedGoogle Scholar
  69. 69.
    Kassim, T. A., Clarke, D. D., Mai, V. Q., et al. (2008). Catecholamine-induced cardiomyopathy. Endocrine Practice, 14, 1137–1149.PubMedCrossRefGoogle Scholar
  70. 70.
    Bloom, S., & David, D. L. (1972). Calcium as mediator of isoproterenol-induced myocardial necrosis. The American Journal of Pathology, 69, 459–470.PubMedGoogle Scholar
  71. 71.
    Uchida, Y., Egami, H., Uchida, Y., et al. (2010). Possible participation of endothelial cell apoptosis of coronary microvessels in the genesis of Takotsubo cardiomyopathy. Clinical Cardiology, 33, 371–377.PubMedCrossRefGoogle Scholar
  72. 72.
    Rosenbaum, D. M., Rasmussen, S. G., & Kobika, B. K. (2009). The structure and function of G-protein-coupled receptors. Nature, 459, 356–363.PubMedCrossRefGoogle Scholar
  73. 73.
    Lyon, A. R., Rees, P. S., Prasad, S., et al. (2008). Stress (Takotsubo) cardiomyopathy-a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nature Clinical Practice. Cardiovascular Medicine, 5, 22–29.PubMedCrossRefGoogle Scholar
  74. 74.
    Collins, P., Rosano, G. M., Jiang, C., et al. (1993). Cardiovascular protection by oestrogen: A calcium antagonist effect? Lancet, 341, 1264–1265.PubMedCrossRefGoogle Scholar
  75. 75.
    Murphy, E., & Steenbergen, C. (2007). Cardioprotection in females: A role for nitric oxide and altered gene expression. Heart Failure Reviews, 12, 293–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Internal MedicineYonsei University Wonju College of MedicineWonjuKorea
  2. 2.Division of CardiologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations