Skip to main content

The WKB Approximation

  • Chapter
  • First Online:
Quantum Theory for Mathematicians

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 267))

  • 149k Accesses

Abstract

The WKB method, named for Gregor Wentzel, Hendrik Kramers, and Léon Brillouin, gives an approximation to the eigenfunctions and eigenvalues of the Hamiltonian operator \(\hat{H}\) in one dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. De Bièvre, J.-C. Houard, M. Irac-Astaud, Wave packets localized on closed classical trajectories. In Differential Equations with Applications to Mathematical Physics. Mathematics in Science and Engineering, vol. 192 (Academic, Boston, 1993), pp. 25–32

    Google Scholar 

  2. S. Dong, Wave Equations in Higher Dimensions (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  3. G. Hagedorn, S. Robinson, Bohr–Sommerfeld quantization rules in the semiclassical limit. J. Phys. A 31, 10113–10130 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. M.V. Karasëv, Connections on Lagrangian submanifolds and some problems in quasiclassical approximation. I. (Russian); translation in J. Soviet Math. 59, 1053–1062 (1992)

    Google Scholar 

  5. P. Miller, Applied Asymptotic Analysis (American Mathematical Society, Providence, RI, 2006)

    MATH  Google Scholar 

  6. T. Paul, A. Uribe, A construction of quasi-modes using coherent states. Ann. Inst. H. Poincaré Phys. Théor 59, 357–381 (1993)

    MATH  MathSciNet  Google Scholar 

  7. M. Reed, B. Simon, Methods of Modern Mathematical Physics. Volume I: Functional Analysis, 2nd edn. (Academic, San Diego, 1980). Volume II: Fourier Analysis, Self-Adjointness (Academic, New York, 1975). Volume III: Scattering Theory (Academic, New York, 1979). Volume IV: Analysis of Operators (Academic, New York, 1978)

    Google Scholar 

  8. A. Voros, Wentzel–Kramers–Brillouin method in the Bargmann representation. Phys. Rev. A 40(3), 6814–6825 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hall, B.C. (2013). The WKB Approximation. In: Quantum Theory for Mathematicians. Graduate Texts in Mathematics, vol 267. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7116-5_15

Download citation

Publish with us

Policies and ethics