Skip to main content

Engineered Antibody Derivatives in Preclinical and Clinical Development

  • Chapter
  • First Online:
Book cover Molecular and Cellular Mechanisms of Antibody Activity

Abstract

Monoclonal antibodies are established treatment options for cancer and autoimmune diseases, but despite obvious clinical success, response rates are still unsatisfactory. Thus, a variety of approaches were pursued to improve antibody therapy resulting in the development of next generation monoclonal antibodies or antibody-derived therapeutic proteins which are in various stages of preclinical or clinical development. These include modified intact antibody molecules with modulated effector functions, antibody conjugates developed to efficiently deliver cytotoxic compounds to the tumor, bispecific antibodies redirecting cytotoxicity by various effector cell populations, as well as antibody derivatives and antibody fragments solely containing selected parts of an antibody with various potential applications. In this chapter, general strategies enhancing the efficacy of intact antibodies and their derivatives are described, and selected examples of molecules that already have entered clinical trials are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alduaij W, Illidge TM (2011) The future of anti-CD20 monoclonal antibodies: are we making progress? Blood 117(11):2993–3001

    PubMed  CAS  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10): 750–763

    PubMed  CAS  Google Scholar 

  • Axworthy DB, Reno JM, Hylarides MD, Mallett RW, Theodore LJ, Gustavson LM et al (2000) Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci USA 97(4):1802–1807

    PubMed  CAS  Google Scholar 

  • Baeuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69(12):4941–4944

    PubMed  CAS  Google Scholar 

  • Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321(5891):974–977

    PubMed  CAS  Google Scholar 

  • Baudino L, Shinohara Y, Nimmerjahn F, Furukawa J, Nakata M, Martinez-Soria E et al (2008) Crucial role of aspartic acid at position 265 in the CH2 domain for murine IgG2a and IgG2b Fc-associated effector functions. J Immunol 181(9):6664–6669

    PubMed  CAS  Google Scholar 

  • Beck A, Reichert JM (2011) Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. mAbs 3(5):415–416

    PubMed  Google Scholar 

  • Becker JC, Pancook JD, Gillies SD, Mendelsohn J, Reisfeld RA (1996a) Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc Natl Acad Sci USA 93(7):2702–2707

    PubMed  CAS  Google Scholar 

  • Becker JC, Pancook JD, Gillies SD, Furukawa K, Reisfeld RA (1996b) T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J Exp Med 183(5):2361–2366

    PubMed  CAS  Google Scholar 

  • Begent R, Sharma S, Chester K (2010) Antibody-Dependent Enzyme Prodrug Therapy (ADEPT). In: Kontermann R, Dübel, S (eds.): Antibody Engineering, Volume 1, 2nd Edition, Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M et al (1998) Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 9(9):995–1001

    PubMed  CAS  Google Scholar 

  • Bernett MJ, Karki S, Moore GL, Leung IW, Chen H, Pong E et al (2010) Engineering fully human monoclonal antibodies from murine variable regions. J Mol Biol 396(5):1474–1490

    PubMed  CAS  Google Scholar 

  • Binyamin L, Alpaugh RK, Hughes TL, Lutz CT, Campbell KS, Weiner LM (2008) Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. J Immunol 180(9):6392–6401

    PubMed  CAS  Google Scholar 

  • Boross P, Jansen JH, de Haij S, Beurskens FJ, van der Poel CE, Bevaart L et al (2011) The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden. Haematologica 96(12):1822–1830

    PubMed  CAS  Google Scholar 

  • Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K et al (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323(5921):1610–1614

    PubMed  CAS  Google Scholar 

  • Bowles JA, Wang SY, Link BK, Allan B, Beuerlein G, Campbell MA et al (2006) Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 108(8):2648–2654

    PubMed  CAS  Google Scholar 

  • Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W (2006) Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol Med 12(8):382–393

    PubMed  CAS  Google Scholar 

  • Burmeister WP, Huber AH, Bjorkman PJ (1994) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372(6504):379–383

    PubMed  CAS  Google Scholar 

  • Burris HA 3rd, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29(4):398–405

    PubMed  CAS  Google Scholar 

  • Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1(2):118–129

    PubMed  CAS  Google Scholar 

  • Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6(5):343–357

    PubMed  CAS  Google Scholar 

  • Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–169

    PubMed  CAS  Google Scholar 

  • Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN et al (2012) Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-­0701): a randomised, open-label, phase 3 study. Lancet 379(9825):1508–1516

    PubMed  CAS  Google Scholar 

  • Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10(5):301–316

    PubMed  CAS  Google Scholar 

  • Chu SY, Horton HM, Pong E, Leung IW, Chen H, Nguyen DH et al (2012) Reduction of total IgE by targeted coengagement of IgE B-cell receptor and FcgammaRIIb with Fc-engineered antibody. J Allergy Clin Immunol 129(4):1102–1115

    PubMed  CAS  Google Scholar 

  • Clark MR (1997) IgG effector mechanisms. Chem Immunol 65:88–110

    PubMed  CAS  Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443–446

    PubMed  CAS  Google Scholar 

  • Dall’Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA et al (2002) Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol 169(9):5171–5180

    PubMed  Google Scholar 

  • Dall’Acqua WF, Kiener PA, Wu H (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281(33):23514–23524

    PubMed  Google Scholar 

  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ (2007a) Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor. J Biol Chem 282(3):1709–1717

    PubMed  CAS  Google Scholar 

  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Jiang W, Wroblewski VJ (2007b) Humanized IgG1 variants with differential binding properties to the neonatal Fc receptor: relationship to pharmacokinetics in mice and primates. Drug Metab Dispos 35(1):86–94

    PubMed  CAS  Google Scholar 

  • Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288–294

    PubMed  CAS  Google Scholar 

  • Davis TA, Kaminski MS, Leonard JP, Hsu FJ, Wilkinson M, Zelenetz A et al (2004) The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res 10(23):7792–7798

    PubMed  CAS  Google Scholar 

  • Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo KM et al (2010) SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 23(4):195–202

    PubMed  CAS  Google Scholar 

  • De Lorenzo C, Arciello A, Cozzolino R, Palmer DB, Laccetti P, Piccoli R et al (2004) A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 64(14):4870–4874

    PubMed  Google Scholar 

  • Dela Cruz JS, Morrison SL, Penichet ML (2005) Insights into the mechanism of anti-tumor immunity in mice vaccinated with the human HER2/neu extracellular domain plus anti-HER2/neu IgG3-(IL-2) or anti-HER2/neu IgG3-(GM-CSF) fusion protein. Vaccine 23(39):4793–4803

    PubMed  CAS  Google Scholar 

  • Dhimolea E, Reichert JM (2012) World bispecific antibody summit, 27–28 Sept 2011, Boston. mAbs 4(1):4–13

    Google Scholar 

  • Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171(3):1581–1587

    PubMed  Google Scholar 

  • Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21(7):778–784

    PubMed  CAS  Google Scholar 

  • Estey E (2012) Treatment of AML: resurrection for gemtuzumab ozogamicin? Lancet 379(9825):1468–1469

    PubMed  Google Scholar 

  • Ferrara C, Stuart F, Sondermann P, Brunker P, Umana P (2006) The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281(8):5032–5036

    PubMed  CAS  Google Scholar 

  • Ferrara C, Grau S, Jager C, Sondermann P, Brunker P, Waldhauer I et al (2011) Unique carbohydrate-­carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci USA 108(31):12669–12674

    PubMed  CAS  Google Scholar 

  • Forero A, Weiden PL, Vose JM, Knox SJ, LoBuglio AF, Hankins J et al (2004) Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood 104(1):227–236

    PubMed  CAS  Google Scholar 

  • Forero-Torres A, de Vos S, Pohlman BL, Pashkevich M, Cronier DM, Dang NH et al (2012) Results of a phase 1 study of AME-133v (LY2469298), an Fc-engineered humanized monoclonal anti-CD20 antibody, in FcgammaRIIIa-genotyped patients with previously treated follicular lymphoma. Clin Cancer Res 18(5):1395–1403

    PubMed  CAS  Google Scholar 

  • Garred P, Michaelsen TE, Aase A (1989) The IgG subclass pattern of complement activation depends on epitope density and antibody and complement concentration. Scand J Immunol 30(3):379–382

    PubMed  CAS  Google Scholar 

  • Ghetie V, Ward ES (2000) Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol 18:739–766

    PubMed  CAS  Google Scholar 

  • Glorius P, Baerenwaldt A, Kellner C, Staudinger M, Parren PWHI, van de Winkel JGJ et al (2013) The novel tribody [(CD20)2xCD16] efficiently triggers effector cell-mediated lysis of malignant B cells. Leukemia 27(1):190–201

    Google Scholar 

  • Golay J, Cittera E, Di Gaetano N, Manganini M, Mosca M, Nebuloni M et al (2006) The role of complement in the therapeutic activity of rituximab in a murine B lymphoma model homing in lymph nodes. Haematologica 91(2):176–183

    PubMed  CAS  Google Scholar 

  • Gong Q, Ou Q, Ye S, Lee WP, Cornelius J, Diehl L et al (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174(2):817–826

    PubMed  CAS  Google Scholar 

  • Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176(1):346–356

    PubMed  CAS  Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    PubMed  CAS  Google Scholar 

  • Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY et al (2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 68(19):8049–8057

    PubMed  CAS  Google Scholar 

  • Horton HM, Chu SY, Ortiz EC, Pong E, Cemerski S, Leung IW et al (2011) Antibody-mediated coengagement of FcgammaRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J Immunol 186(7):4223–4233

    PubMed  CAS  Google Scholar 

  • Hutt M, Farber-Schwarz A, Unverdorben F, Richter F, Kontermann RE (2012) Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem 287(7):4462–4469

    PubMed  CAS  Google Scholar 

  • Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M et al (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166(4):2571–2575

    PubMed  CAS  Google Scholar 

  • Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S et al (2012) Defucosylated anti-­CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 30(8):837–842

    PubMed  CAS  Google Scholar 

  • Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8(3):226–234

    PubMed  CAS  Google Scholar 

  • Jefferis R (2012) Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys 526(2):159–166

    Google Scholar 

  • Jefferis R, Lund J (2002) Interaction sites on human IgG-Fc for FcgammaR: current models. Immunol Lett 82(1–2):57–65

    PubMed  CAS  Google Scholar 

  • Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W et al (2010) Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 399(3):436–449

    PubMed  CAS  Google Scholar 

  • Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I, Tucker PW et al (2010) Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci USA 107(2):604–609

    PubMed  CAS  Google Scholar 

  • Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H et al (2008) A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 31(9):871–884

    PubMed  CAS  Google Scholar 

  • Kellner C, Bleeker WK, Lammerts van Bueren JJ, Staudinger M, Klausz K, Derer S et al (2011) Human kappa light chain targeted Pseudomonas exotoxin A–identifying human antibodies and Fab fragments with favorable characteristics for antibody-drug conjugate development. J Immunol Methods 371(1–2):122–133

    PubMed  CAS  Google Scholar 

  • Kellner C, Hallack D, Glorius P, Staudinger M, Mohseni Nodehi S, de Weers M et al (2012) Fusion proteins between ligands for NKG2D and CD20-directed single-chain variable fragments sensitize lymphoma cells for natural killer cell-mediated lysis and enhance antibody-dependent cellular cytotoxicity. Leukemia 26(4):830–834

    PubMed  CAS  Google Scholar 

  • King DM, Albertini MR, Schalch H, Hank JA, Gan J, Surfus J et al (2004) Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol 22(22):4463–4473

    PubMed  CAS  Google Scholar 

  • Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von der Lieth CW, Matys ER et al (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 293(1):41–56

    PubMed  CAS  Google Scholar 

  • Knox SJ, Goris ML, Tempero M, Weiden PL, Gentner L, Breitz H et al (2000) Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 6(2):406–414

    PubMed  CAS  Google Scholar 

  • Ko YJ, Bubley GJ, Weber R, Redfern C, Gold DP, Finke L et al (2004) Safety, pharmacokinetics, and biological pharmacodynamics of the immunocytokine EMD 273066 (huKS-IL2): results of a phase I trial in patients with prostate cancer. J Immunother 27(3):232–239

    PubMed  CAS  Google Scholar 

  • Kohrt HE, Houot R, Goldstein MJ, Weiskopf K, Alizadeh AA, Brody J et al (2011) CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood 117(8):2423–2432

    PubMed  CAS  Google Scholar 

  • Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D et al (2012) Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest 122(3):1066–1075

    PubMed  CAS  Google Scholar 

  • Kontermann RE (2009) Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 23(2):93–109

    PubMed  CAS  Google Scholar 

  • Kontermann RE (2012) Antibody-cytokine fusion proteins. Arch Biochem Biophys 526(2):194–205

    Google Scholar 

  • Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, FitzGerald DJ et al (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-­cell leukemia. N Engl J Med 345(4):241–247

    PubMed  CAS  Google Scholar 

  • Kreitman RJ, Stetler-Stevenson M, Margulies I, Noel P, Fitzgerald DJ, Wilson WH et al (2009) Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J Clin Oncol 27(18):2983–2990

    PubMed  CAS  Google Scholar 

  • Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M et al (2012) Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 30(15):1822–1828

    PubMed  CAS  Google Scholar 

  • Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W et al (2010) Phase I study of trastuzumab-­DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-­positive metastatic breast cancer. J Clin Oncol 28(16):2698–2704

    PubMed  CAS  Google Scholar 

  • Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103(11):4005–4010

    PubMed  CAS  Google Scholar 

  • Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68(22):9280–9290

    PubMed  CAS  Google Scholar 

  • Linenberger ML (2005) CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19(2):176–182

    PubMed  CAS  Google Scholar 

  • Linke R, Klein A, Seimetz D (2010) Catumaxomab: clinical development and future directions. mAbs 2(2):129–136

    PubMed  Google Scholar 

  • Lode HN, Xiang R, Becker JC, Gillies SD, Reisfeld RA (1998a) Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol Ther 80(3):277–292

    PubMed  CAS  Google Scholar 

  • Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998b) Natural killer cell-­mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91(5):1706–1715

    PubMed  CAS  Google Scholar 

  • Lohse S, Derer S, Beyer T, Klausz K, Peipp M, Leusen JH et al (2011) Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol 186(6):3770–3778

    PubMed  CAS  Google Scholar 

  • Mayer A, Francis RJ, Sharma SK, Tolner B, Springer CJ, Martin J et al (2006) A phase I study of single administration of antibody-directed enzyme prodrug therapy with the recombinant anti-­carcinoembryonic antigen antibody-enzyme fusion protein MFECP1 and a bis-iodo phenol mustard prodrug. Clin Cancer Res 12(21):6509–6516

    PubMed  CAS  Google Scholar 

  • McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S et al (2012) Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther 11(3):582–593

    PubMed  CAS  Google Scholar 

  • Menzel C, Schirrmann T, Konthur Z, Jostock T, Dubel S (2008) Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 111(7):3830–3837

    PubMed  CAS  Google Scholar 

  • Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG et al (1998) An efficient route to human bispecific IgG. Nat Biotechnol 16(7):677–681

    PubMed  CAS  Google Scholar 

  • Muller D, Kontermann RE (2010) Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs 24(2):89–98

    PubMed  Google Scholar 

  • Müller D, Karle A, Meissburger B, Hofig I, Stork R, Kontermann RE (2007) Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 282(17):12650–12660

    PubMed  Google Scholar 

  • Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796

    PubMed  CAS  Google Scholar 

  • Napier MP, Sharma SK, Springer CJ, Bagshawe KD, Green AJ, Martin J et al (2000) Antibody-­directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinoma. Clin Cancer Res 6(3):765–772

    PubMed  CAS  Google Scholar 

  • Natsume A, In M, Takamura H, Nakagawa T, Shimizu Y, Kitajima K et al (2008) Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res 68(10):3863–3872

    PubMed  CAS  Google Scholar 

  • Niethammer AG, Xiang R, Ruehlmann JM, Lode HN, Dolman CS, Gillies SD et al (2001) Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res 61(16):6178–6184

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    PubMed  CAS  Google Scholar 

  • Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A et al (2004) Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Clin Cancer Res 10(18 Pt 1):6248–6255

    PubMed  CAS  Google Scholar 

  • Oganesyan V, Damschroder MM, Woods RM, Cook KE, Wu H, Dall’acqua WF (2009) Structural characterization of a human Fc fragment engineered for extended serum half-life. Mol Immunol 46(8–9):1750–1755

    PubMed  CAS  Google Scholar 

  • Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26(11):1774–1777

    PubMed  Google Scholar 

  • Osenga KL, Hank JA, Albertini MR, Gan J, Sternberg AG, Eickhoff J et al (2006) A phase I clinical trial of the hu14.18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the Children’s Oncology Group. Clin Cancer Res 12(6):1750–1759

    PubMed  CAS  Google Scholar 

  • Pancook JD, Becker JC, Gillies SD, Reisfeld RA (1996) Eradication of established hepatic human neuroblastoma metastases in mice with severe combined immunodeficiency by antibody-­targeted interleukin-2. Cancer Immunol Immunother 42(2):88–92

    PubMed  CAS  Google Scholar 

  • Pasche N, Neri D (2012) Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 17(11–12):583–590

    PubMed  CAS  Google Scholar 

  • Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6(7):559–565

    PubMed  CAS  Google Scholar 

  • Pastan I, Onda M, Weldon J, Fitzgerald D, Kreitman R (2011) Immunotoxins with decreased immunogenicity and improved activity. Leuk Lymphoma 52(Suppl 2):87–90

    PubMed  CAS  Google Scholar 

  • Paz-Ares LG, Gomez-Roca C, Delord JP, Cervantes A, Markman B, Corral J et al (2011) Phase I pharmacokinetic and pharmacodynamic dose-escalation study of RG7160 (GA201), the first glycoengineered monoclonal antibody against the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol 29(28):3783–3790

    PubMed  CAS  Google Scholar 

  • Peipp M, Kupers H, Saul D, Schlierf B, Greil J, Zunino SJ et al (2002) A recombinant CD7-­specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Cancer Res 62(10):2848–2855

    PubMed  CAS  Google Scholar 

  • Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WW, Dechant M, Beyer T et al (2008) Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112(6):2390–2399

    PubMed  CAS  Google Scholar 

  • Peipp M, van de Winkel JG, Valerius T (2011) Molecular engineering to improve antibodies’ anti-­lymphoma activity. Best Pract Res Clin Haematol 24(2):217–229

    PubMed  CAS  Google Scholar 

  • Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC et al (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18(12):1759–1769

    PubMed  CAS  Google Scholar 

  • Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20(4):460–470

    PubMed  CAS  Google Scholar 

  • Reilly RM (2006) Radioimmunotherapy of solid tumors: the promise of pretargeting strategies using bispecific antibodies and radiolabeled haptens. J Nucl Med 47(2):196–199

    PubMed  CAS  Google Scholar 

  • Renders L, Valerius T (2003) Engineered CD3 antibodies for immunosuppression. Clin Exp Immunol 133(3):307–309

    PubMed  CAS  Google Scholar 

  • Richards JO, Karki S, Lazar GA, Chen H, Dang W, Desjarlais JR (2008) Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 7(8):2517–2527

    PubMed  CAS  Google Scholar 

  • Rossi EA, Goldenberg DM, Cardillo TM, McBride WJ, Sharkey RM, Chang CH (2006) Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci USA 103(18):6841–6846

    PubMed  CAS  Google Scholar 

  • Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Chang CH (2009) Hexavalent bispecific antibodies represent a new class of anticancer therapeutics: 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood 113(24):6161–6171

    PubMed  CAS  Google Scholar 

  • Salles G, Morschhauser F, Lamy T, Milpied NJ, Thieblemont C, Tilly H, et al (2012) Phase 1 study results of the type II glycoengineered humanized anti-CD20 monoclonal antibody obinutuzumab (GA101) in B-cell lymphoma patients. Blood 119(22):5126–5132

    Google Scholar 

  • Samel D, Muller D, Gerspach J, Assohou-Luty C, Sass G, Tiegs G et al (2003) Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-­restricted Activation. J Biol Chem 278(34):32077–32082

    PubMed  CAS  Google Scholar 

  • Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci USA 105(51):20167–20172

    PubMed  CAS  Google Scholar 

  • Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D et al (2011a) A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 20(4):472–486

    PubMed  CAS  Google Scholar 

  • Schaefer W, Regula JT, Bahner M, Schanzer J, Croasdale R, Durr H et al (2011b) Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci USA 108(27):11187–11192

    PubMed  CAS  Google Scholar 

  • Schirrmann T, Krauss J, Arndt MA, Rybak SM, Dubel S (2009) Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther 9(1):79–95

    PubMed  CAS  Google Scholar 

  • Schneider-Merck T, Lammerts van Bueren JJ, Berger S, Rossen K, van Berkel PH, Derer S et al (2010) Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage. J Immunol 184(1):512–520

    PubMed  CAS  Google Scholar 

  • Schultz J, Lin Y, Sanderson J, Zuo Y, Stone D, Mallett R et al (2000) A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res 60(23):6663–6669

    PubMed  CAS  Google Scholar 

  • Schuurman J, Vink T, van de Winkel J, Labrijn AF, Aalberse R, van der Kolfschoten M et al (2008) Inventors; bispecific antibodies and production thereof (WO2008119353)

    Google Scholar 

  • Schwemmlein M, Peipp M, Barbin K, Saul D, Stockmeyer B, Repp R et al (2006) A CD33-specific single-chain immunotoxin mediates potent apoptosis of cultured human myeloid leukaemia cells. Br J Haematol 133(2):141–151

    PubMed  CAS  Google Scholar 

  • Segal DM, Weiner GJ, Weiner LM (1999) Bispecific antibodies in cancer therapy. Curr Opin Immunol 11(5):558–562

    PubMed  CAS  Google Scholar 

  • Seimetz D, Lindhofer H, Bokemeyer C (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36(6):458–467

    PubMed  CAS  Google Scholar 

  • Shahied LS, Tang Y, Alpaugh RK, Somer R, Greenspon D, Weiner LM (2004) Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J Biol Chem 279(52):53907–53914

    PubMed  CAS  Google Scholar 

  • Sharkey RM, Goldenberg DM (2011) Cancer radioimmunotherapy. Immunotherapy 3(3):349–370

    PubMed  Google Scholar 

  • Shibata-Koyama M, Iida S, Misaka H, Mori K, Yano K, Shitara K et al (2009) Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcgammaRIIIb and MHC class II expression on the phagocytotic neutrophils. Exp Hematol 37(3):309–321

    PubMed  CAS  Google Scholar 

  • Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J et al (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604

    PubMed  CAS  Google Scholar 

  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-­dependent cellular toxicity. J Biol Chem 277(30):26733–26740

    PubMed  CAS  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473

    PubMed  CAS  Google Scholar 

  • Shusterman S, London WB, Gillies SD, Hank JA, Voss SD, Seeger RC et al (2010) Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol 28(33):4969–4975

    PubMed  CAS  Google Scholar 

  • Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19(13):3244–3254

    PubMed  CAS  Google Scholar 

  • Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 406(6793):267–273

    PubMed  CAS  Google Scholar 

  • Staerz UD, Kanagawa O, Bevan MJ (1985) Hybrid antibodies can target sites for attack by T cells. Nature 314(6012):628–631

    PubMed  CAS  Google Scholar 

  • Stahnke B, Thepen T, Stocker M, Rosinke R, Jost E, Fischer R et al (2008) Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 7(9):2924–2932

    PubMed  CAS  Google Scholar 

  • Stamova S, Cartellieri M, Feldmann A, Bippes CC, Bartsch H, Wehner R et al (2011) Simultaneous engagement of the activatory receptors NKG2D and CD3 for retargeting of effector cells to CD33-positive malignant cells. Leukemia 25(6):1053–1056

    PubMed  CAS  Google Scholar 

  • Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S et al (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67(18):8882–8890

    PubMed  CAS  Google Scholar 

  • Stieglmaier J, Bremer E, Kellner C, Liebig TM, ten Cate B, Peipp M et al (2008) Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 57(2):233–246

    PubMed  Google Scholar 

  • Stork R, Muller D, Kontermann RE (2007) A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G. Protein Eng Des Sel 20(11):569–576

    PubMed  CAS  Google Scholar 

  • Stork R, Zettlitz KA, Muller D, Rether M, Hanisch FG, Kontermann RE (2008) N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 283(12):7804–7812

    PubMed  CAS  Google Scholar 

  • Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C et al (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-­linked anti-CD30-auristatin conjugates. J Biol Chem 281(15):10540–10547

    PubMed  CAS  Google Scholar 

  • Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S et al (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29(18):2493–2498

    PubMed  CAS  Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    PubMed  CAS  Google Scholar 

  • Unverdorben F, Farber-Schwarz A, Richter F, Hutt M, Kontermann RE (2012) Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal protein A. Protein Eng Des Sel 25(2):81–88

    PubMed  CAS  Google Scholar 

  • van Berkel PH, Gerritsen J, van Voskuilen E, Perdok G, Vink T, van de Winkel JG et al (2010) Rapid production of recombinant human IgG With improved ADCC effector function in a transient expression system. Biotechnol Bioeng 105(2):350–357

    PubMed  Google Scholar 

  • von Strandmann EP, Hansen HP, Reiners KS, Schnell R, Borchmann P, Merkert S et al (2006) A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood 107(5):1955–1962

    Google Scholar 

  • Waetzig GH, Rose-John S (2012) Hitting a complex target: an update on interleukin-6 trans-­signalling. Expert Opin Ther Targets 16(2):225–236

    PubMed  CAS  Google Scholar 

  • Wang SY, Veeramani S, Racila E, Cagley J, Fritzinger DC, Vogel CW et al (2009) Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood 114(26):5322–5330

    PubMed  CAS  Google Scholar 

  • Wang F, Ren J, Qiu XC, Wang LF, Zhu Q, Zhang YQ et al (2010) Selective cytotoxicity to HER2-­positive tumor cells by a recombinant e23sFv-TD-tBID protein containing a furin cleavage sequence. Clin Cancer Res 16(8):2284–2294

    PubMed  CAS  Google Scholar 

  • Weiden PL, Breitz HB, Press O, Appelbaum JW, Bryan JK, Gaffigan S et al (2000) Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin’s lymphoma (NHL): initial phase I/II study results. Cancer Biother Radiopharm 15(1):15–29

    PubMed  CAS  Google Scholar 

  • Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327

    PubMed  CAS  Google Scholar 

  • Wels W, Harwerth IM, Mueller M, Groner B, Hynes NE (1992) Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res 52(22):6310–6317

    PubMed  CAS  Google Scholar 

  • Wels W, Beerli R, Hellmann P, Schmidt M, Marte BM, Kornilova ES et al (1995) EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. Int J Cancer 60(1):137–144

    PubMed  CAS  Google Scholar 

  • Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–3947

    PubMed  CAS  Google Scholar 

  • Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN et al (2002) Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-­refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol 20(15):3262–3269

    PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15(1):26–32

    PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23(9):1137–1146

    PubMed  CAS  Google Scholar 

  • Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A et al (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25(11):1290–1297

    PubMed  CAS  Google Scholar 

  • Xiang R, Lode HN, Dolman CS, Dreier T, Varki NM, Qian X et al (1997) Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res 57(21):4948–4955

    PubMed  CAS  Google Scholar 

  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622

    PubMed  CAS  Google Scholar 

  • Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S et al (2009) Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 182(12):7663–7671

    PubMed  CAS  Google Scholar 

  • Yeung YA, Wu X, Reyes AE 2nd, Vernes JM, Lien S, Lowe J et al (2010) A therapeutic anti-VEGF antibody with increased potency independent of pharmacokinetic half-life. Cancer Res 70(8):3269–3277

    PubMed  CAS  Google Scholar 

  • Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821

    PubMed  CAS  Google Scholar 

  • Zalevsky J, Leung IW, Karki S, Chu SY, Zhukovsky EA, Desjarlais JR et al (2009) The impact of Fc engineering on an anti-CD19 antibody: increased Fcgamma receptor affinity enhances B-cell clearing in nonhuman primates. Blood 113(16):3735–3743

    PubMed  CAS  Google Scholar 

  • Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28(2):157–159

    PubMed  CAS  Google Scholar 

  • Zeidler R, Reisbach G, Wollenberg B, Lang S, Chaubal S, Schmitt B et al (1999) Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol 163(3):1246–1252

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to all investigators whose important work in the field could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Peipp Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kellner, C., Peipp, M. (2013). Engineered Antibody Derivatives in Preclinical and Clinical Development. In: Nimmerjahn, F. (eds) Molecular and Cellular Mechanisms of Antibody Activity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7107-3_10

Download citation

Publish with us

Policies and ethics