Overconvergence and Convergence in ℂ of Some Integral Convolutions

  • Sorin G. Gal
Chapter

Abstract

This chapter deals with the overconvergence and convergence in ℂ of some trigonometric convolution operators and with the approximation by some special type of convolutions called complex potentials, generated by the Beta and Gamma functions.

Keywords

Convolution 

References

  1. 6.
    Aliev, I.A., Gadjiev, A.D., Aral, A.: On approximation properties of a family of linear operators at critical value of parameter. J. Approx. Theory 138, 242–253 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 13.
    Beatson, R.K.: Bell-shape preserving convolution operators. Technical Report, Department of Mathematics, University of Otago, Dunedin, New Zealand, 1978Google Scholar
  3. 31.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation: Polynomials and Splines Approximation, vol. 303. Springer, Berlin, Heidelberg (1993)MATHCrossRefGoogle Scholar
  4. 35.
    Flett, T.M.: Temperatures, Bessel potentials and Lipschitz space. Proc. Lond. Math. Soc. 22(3), 385–451 (1971)MathSciNetMATHCrossRefGoogle Scholar
  5. 36.
    Gadjiev, A.D., Aral, A., Aliev, I.A.: On behaviour of Riesz and generalized Riesz potentials as order tends to zero. Math. Inequalities Appl. 4, 875–888 (2007)MathSciNetCrossRefGoogle Scholar
  6. 37.
    Gaier, D.: Approximation durch Fejér-Mittel in der Klausse A. Mitt. Math. Sem. Giessen 123, 1–6 (1977)MathSciNetGoogle Scholar
  7. 39.
    Gal, S.G.: Shape Preserving Approximation by Real and Complex Polynomials. Birkhauser, Boston, Basel, Berlin (2008)MATHCrossRefGoogle Scholar
  8. 40.
    Gal, S.G.: On Beatson convolution operators in the unit disk. J. Anal. 10, 101–106 (2002)MathSciNetMATHGoogle Scholar
  9. 42.
    Gal, S.G.: Geometric and approximate properties of convolution polynomials in the unit disk. Bull. Inst. Math. Acad. Sinica (New Series) 1, 307–336 (2006)Google Scholar
  10. 48.
    Gal, S.G.: Degree of approximation of continuous functions by some singular integrals. Revue D’Analyse Numér. Théor. Approx. (Cluj) 27(2), 251–261 (1998)Google Scholar
  11. 49.
    Gal, S.G.: Approximation by Complex Bernstein and Convolution Type Operators. World Scientific Publishing, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai (2009)MATHGoogle Scholar
  12. 55.
    Gal, S.G.: Convolution type integral operators in complex approximation. Comput. Meth. Funct. Theory 1(2), 417–432 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 56.
    Gal, S.G.: Approximation by complex potentials generated by the Gamma function. Turkish J. Math. 35(3), 443–456 (2010)MathSciNetGoogle Scholar
  14. 57.
    Gal, S.G.: Approximation by complex potentials generated by the Euler’s Beta function. Eur. J. Pure Appl. Math. 3(6), 1150–1164 (2010)MathSciNetMATHGoogle Scholar
  15. 64.
    Gal, G.C., Gal, S.G., Goldstein, J.A.: Higher order heat and Laplace type equations with real time variable and complex spatial variable. Complex Variables Elliptic Equat. 55(4), 357–373 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 65.
    Gal, S.G., Greiner, R.: Convolution polynomials through Beatson kernels in the unit disk. Anal. Univ. Oradea Fasc. Math. XVII(2), 213–217 (2010)Google Scholar
  17. 93.
    Kurokawa, T.: On the Riesz and Bessel kernels as approximations of the identity. Sci. Rep. Kagoshima Univ. 30, 31–45 (1981)MathSciNetMATHGoogle Scholar
  18. 97.
    Lorentz, G.G.: Approximation of Functions. Chelsea Publication, New York (1987)Google Scholar
  19. 110.
    Mocanu, P.T., Bulboacă, T., Sălăgean, Gr. St.: Geometric Function Theory of Univalent Functions, (in Romanian). Science Book’s House, Cluj-Napoca (1999)Google Scholar
  20. 116.
    Obradović, M.: Simple sufficient conditions for univalence. Matem. Vesnik 49, 241–244 (1997)MATHGoogle Scholar
  21. 127.
    Ruscheweyh, St., Salinas, L.C.: On the preservation of periodic monotonicity. Constr. Approx. 8, 129–140 (1992)Google Scholar
  22. 129.
    Schoenberg, I.J.: On variation diminishing approximation methods. In: Langer, R. (ed.) On Numerical Approximation, pp. 249–274. University of Wisconsin Press, Madison (1959)Google Scholar
  23. 131.
    Sezer, S.: On approximation properties of the families of Flett and generalized Flett potentials. Int. J. Math. Anal. 3(39), 1905–1915 (2009)MathSciNetMATHGoogle Scholar
  24. 133.
    Stancu, D.D.: Course of Numerical Analysis (in Romanian), Faculty of Mathematics and Mechanics. “Babes-Bolyai” University, Cluj (1977)Google Scholar
  25. 135.
    Stepanets, A.I.: Classification and Approximation of Periodic Functions, Mathematics and Its Applications, vol. 333. Kluwer Academic, Dordrecht, Boston, London (1995)CrossRefGoogle Scholar
  26. 137.
    Suffridge, T.: On univalent polynomials. J. Lond. Math. Soc. 44, 496–504 (1969)MathSciNetMATHCrossRefGoogle Scholar
  27. 140.
    Uyhan, S.B., Gadjiev, A.D., Aliev, I.A.: On approximation properties of the parabolic potentials. Bull. Aust. Math. Soc. 74, 449–460 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sorin G. Gal
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of OradeaOradeaRomania

Personalised recommendations