Skip to main content

Transgenic Multivitamin Biofortified Corn: Science, Regulation, and Politics

  • Chapter
  • First Online:
Handbook of Food Fortification and Health

Abstract

Micronutrient deficiency is a major global challenge because at any one time up to 50 % of the world’s population may suffer from diseases caused by a chronic insufficient supply of vitamins and minerals, and this largely reflects the lack of access to a diverse diet [1]. In developed countries, micronutrient deficiency is addressed by encouraging the consumption of fresh fruits and vegetables, along with supplementation and fortification programs to enhance the nutritional value of staple foods [2]. In contrast, the populations of developing countries typically subsist on a monotonous diet of milled cereal grains such as rice or maize, which are poor sources of vitamins and minerals. Strategies that have been proposed to overcome micronutrient deficiencies in developing countries include supplementation, fortification, and the implementation of conventional breeding and genetic engineering programs to generate nutrient-rich varieties of staple crops. Unfortunately, the first two strategies have been largely unsuccessful because of the insufficient funding, poor governance, and dysfunctional distribution network in developing country settings [3]. Biofortification programs based on conventional breeding have enjoyed only marginal success because of the limited available genetic diversity and the time required to develop crops with enhanced nutritional properties as well as desirable agronomic characteristics. It is also impossible to conceive of a conventional breeding strategy that would ever produce “nutritionally complete” cereals [2]. More promising results have been obtained by engineering the metabolic pathways leading to provitamin A, vitamin B9, and vitamin C (β-carotene, folate, and ascorbate) in the same transgenic corn line [4]. Genetic engineering therefore has immense potential to improve the nutritional properties of staple crops and contribute to better health, although a number of technical, economical, regulatory, and sociopolitical constraints remain to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Adcs:

Aminodeoxychorismate synthase

CRTB:

Bacterial phytoene synthase

CRTI:

Bacterial phytoene desaturase/isomerase

CRTY:

Bacterial lycopene cyclase

Dhar:

Dehydroascorbate reductase

DHPS:

7,8-Dihydropteroate synthase

EU:

European Union

folE:

E. coli GTP cyclohydrolase

FPGS:

Folypolyglutamate synthetase

GalLDH:

l-Galactono-1,4-lactone dehydrogenase

gch1:

GTP cyclohydrolase 1

GGP:

GDP-l-galactose phosphorylase

GGPP:

Geranylgeranyl diphosphate

Glbch:

Gent iana lutea β-carotene hydroxylase

Gllycb:

Gentiana lutea lycopene β-cyclase

GLOase:

l-Gulono1,4-lactone oxidase

GME:

GDP-d-mannose-3′,5′-epimerase

HGA:

Homogentisic acid

HMDHP:

Hydroxymethyldihydropterin

HPP:

ρ-Hydroxyphenylpyruvic acid

HPPD:

ρ-Hydroxyphenylpyruvic acid dioxygenase

HPPK:

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase

HPT1:

Homogentisate phytyltransferase

MDHA:

Monodehydroascorbate

MPBQ:

2-Methyl-6-phytylbenzoquino

MPBQ MT:

MPBQ methyltransferase

Or:

Orange

PABA:

p-Aminobenzoate

PacrtI:

Pantoea ananatis phytoene desaturase

ParacrtW:

Paracoccus β-carotene ketolase

PSY1:

Phytoene synthase

RAE:

Retinol activity equivalent

RDI:

Reference daily intake

RNAi:

RNA interference

TC:

Tocopherol cyclase

TyrA:

Prephenate dehydrogenase

Zmpsy1:

Zea mays phytoene synthase 1

γ-TMT:

γ-Tocopherol methyltransferase

References

  1. Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P. Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci. 2007;12:548–55.

    Article  PubMed  CAS  Google Scholar 

  2. Gomez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, et al. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 2010;19:165–80.

    Article  PubMed  CAS  Google Scholar 

  3. Nantel G, Tontisirin K. Policy and sustainability issues. J Nutr. 2002;132:S839–44.

    Google Scholar 

  4. Naqvi S, Zhu C, Farré G, Ramessara K, Bassie L, Breitenbach J, et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A. 2009;106:7762–7.

    Article  PubMed  CAS  Google Scholar 

  5. Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, et al. Travel advice on the road to carotenoids in plants. Plant Sci. 2010;179:28–48.

    Article  Google Scholar 

  6. Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, et al. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids and intermediary metabolism. Plant Cell. 2007;19:3194–211.

    Article  PubMed  CAS  Google Scholar 

  7. Shewmaker CK, Sheehyl JA, Daley M, Colburn S, Ke YD. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 1999;20:401–12.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in corn. Proc Natl Acad Sci U S A. 2008;105:18232–7.

    Article  PubMed  CAS  Google Scholar 

  9. Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng. 2003;5:255–63.

    Article  PubMed  CAS  Google Scholar 

  10. Burkhard PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 1997;11:1071–8.

    Article  Google Scholar 

  11. Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res. 2008;17:573–85.

    Article  PubMed  CAS  Google Scholar 

  12. Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 2001;26:59–67.

    Article  PubMed  CAS  Google Scholar 

  13. Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell. 2006;18:3594–605.

    Article  PubMed  CAS  Google Scholar 

  14. Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O’Neill J, Li L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot. 2008;59:213–23.

    Article  PubMed  CAS  Google Scholar 

  15. Jain AK, Nessler CL. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed. 2000;6:73–8.

    Article  CAS  Google Scholar 

  16. Ishikawa T, Dowdle J, Smirnoff N. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant. 2006;126:343–55.

    Article  CAS  Google Scholar 

  17. Hemavathi CP, Upadhyaya AN, Akula N, Young KE, Chun SC, Kim DH, et al. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett. 2010;32:321–30.

    Article  PubMed  CAS  Google Scholar 

  18. Qin A, Shi Q, Yu X. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep. 2010;38:1557–66.

    Article  PubMed  Google Scholar 

  19. Quinlivan EP, McPartlin J, McNulty H, Ward M, Strain JJ, Weir DG, et al. Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet. 2002;359:227–8.

    Article  PubMed  CAS  Google Scholar 

  20. Geisel J. Folic acid and neural tube defects in pregnancy—a review. J Perinat Neonatal Nurs. 2003;17:268–79.

    PubMed  Google Scholar 

  21. Farré G, Twyman RM, Zhu C, Capell T, Christou P. Nutritionally enhanced crops and food security: scientific achievements versus political expediency. Curr Opin Biotechnol. 2011;22:245–51.

    Article  PubMed  Google Scholar 

  22. Díaz de la Garza RI, Quinlivan EP, Klaus SM, Basset GJ, Gregory JF, Hanson AD. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci U S A. 2004;101:13720–5.

    Article  PubMed  Google Scholar 

  23. Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang GF, et al. Folate fortification of rice by metabolic engineering. Nat Biotechnol. 2007;25:1277–9.

    Article  PubMed  CAS  Google Scholar 

  24. McIntosh SR, Henry RJ. Genes of folate biosynthesis in wheat. J Cereal Sci. 2008;48:632–8.

    Article  CAS  Google Scholar 

  25. Karunanandaa B, Qi Q, Haoa M, Baszis S, Jensen P, Wong Y, et al. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng. 2005;7:384–400.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar R, Raclaru M, Schusseler T, Gruber J, Sadre R, Lühs W, et al. Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett. 2005;579:1357–64.

    Article  PubMed  CAS  Google Scholar 

  27. van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell. 2003;15:3007–19.

    Article  PubMed  Google Scholar 

  28. Fraser P, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res. 2004;43:228–65.

    Article  PubMed  CAS  Google Scholar 

  29. Chatterjee IB, Majumder AK, Nandi BK, Subramanian N. Synthesis and some major functions of vitamin C in animals. Ann N Y Acad Sci. 1975;258:24–47.

    Article  PubMed  CAS  Google Scholar 

  30. Zhu C, Sanahuja G, Yuan D Farre G, Arjo G, Berman J, Zorrilla-Lopez U, et al. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 2013;11:129–41.

    Google Scholar 

  31. Ames BN. Cancer prevention and diet: help from single nucleotide polymorphisms. Proc Natl Acad Sci U S A. 1998;96:12216–8.

    Article  Google Scholar 

  32. Green R, Miller JW. Folate deficiency beyond megaloblastic anemia: hyperhomocysteinemia and other manifestations of dysfunctional folate status. Semin Hematol. 1999;36:47–64.

    PubMed  CAS  Google Scholar 

  33. Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P. When more is better: multigene engineering in plants. Trends in Plant Sci. 2010;15:48–56.

    Google Scholar 

  34. Stanger O. The potential role of homocysteine in percutaneous coronary interventions (PCI): review of current evidence and plausibility of action. Cell Mol Biol. 2004;50:953–88.

    PubMed  CAS  Google Scholar 

  35. Choi SW, Friso S. Interactions between folate and aging for carcinogenesis. Clin Chem Lab Med. 2005;43:1151–7.

    Article  PubMed  CAS  Google Scholar 

  36. Institute of Medicine (IOM), Food and Nutrition Board. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. A report of the panel on dietary antioxidants and related compounds, subcommittees on upper reference levels of nutrients and interpretation and uses of dietary reference intakes, and the standing committee on the scientific evaluation of dietary reference intakes. Washington, DC: National Academy Press; 2001.

    Google Scholar 

  37. Institute of Medicine (IOM). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 1998.

    Google Scholar 

  38. Naqvi S, Zhu C, Farré G, Sandmann G, Capell T, Christou P. Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnol. 2011;9:384–93.

    Article  CAS  Google Scholar 

  39. Bai C, Twyman RM, Farré G, Sanahuja G, Christou P, Capell T, et al. A golden era—pro-vitamin A enhancement in diverse crops. In Vitro Cell Dev Biol Plant. 2011;47:205–21.

    CAS  Google Scholar 

  40. Paolillo DJ, Garvin DF, Parthasarathy MV. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma. 2004;224:245–53.

    Article  PubMed  Google Scholar 

  41. Yuan D, Bassie L, Sabalza M, Miralpeix B, Dashevskaya S, Farré G, et al. The potential impact of plant biotechnology on the millennium development goals. Plant Cell Rep. 2011;30:249–65.

    Article  PubMed  CAS  Google Scholar 

  42. Sabalza M, Miralpeix B, Twyman RM, Capell T, Christou P. EU legitimizes GM crop exclusion zones. Nat Biotechnol. 2011;29:315–7.

    Article  PubMed  CAS  Google Scholar 

  43. Farré G, Ramessar K, Twyman RM, Capell T, Christou P. The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Curr Opin Plant Biol. 2010;13:219–25.

    Article  PubMed  Google Scholar 

  44. Ramessar K, Capell T, Twyman RM, Christou P. Going to ridiculous lengths European coexistence regulations for GM crops. Nat Biotechnol. 2010;28:133–6.

    Article  PubMed  CAS  Google Scholar 

  45. Twyman RM, Ramessar K, Quemada H, Capell T, Christou P. Plant biotechnology: the importance of being accurate. Trends Biotechnol. 2009;27:609–12.

    Article  PubMed  CAS  Google Scholar 

  46. Sizer F, Sienkiewicz F, Whitney E. Nutrition: concepts and controversies. 11th ed. Belmont, CA: Thomson Wadsworth; 2008. p. 221–35.

    Google Scholar 

  47. Maqbool A, Stallings VA. Update on fat-soluble vitamins in cystic fibrosis. Curr Opin Pulm Med. 2008;14:74–581.

    Article  Google Scholar 

  48. Hathcock JN, Azzi A, Blumberg J, Bray T, Dickinson A, Frei B, et al. Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr. 2005;81:736–45.

    PubMed  CAS  Google Scholar 

  49. Baggott JE, Morgan SL, Ha T, Vaughn WH, Hine RJ. Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem J. 1992;282:197–202.

    PubMed  CAS  Google Scholar 

  50. Baggott JE, Oster RA, Tamura T. Meta-analysis of cancer risk in folic acid supplementation trials. Colorectal Dis. 2011;13:132–7.

    Article  Google Scholar 

  51. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science. 2008;319:330–3.

    Article  PubMed  CAS  Google Scholar 

  52. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol. 2005;23:482–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Research at the Universitat de Lleida is supported by MICINN, Spain (BIO2011-23324; BIO02011-22525; BIO2012-35359; PIM2010PKB-00746); European Union Framework 7 Program-SmartCell Integrated Project 222716; European Union Framework 7 European Research Council IDEAS Advanced Grant (to PC) Program-BIOFORCE; RecerCaixa; COST Action FA0804: Molecular farming: plants as a production platform for high value proteins; Centre CONSOLIDER on Agrigenomics funded by MICINN, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Christou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farré, G. et al. (2013). Transgenic Multivitamin Biofortified Corn: Science, Regulation, and Politics. In: Preedy, V., Srirajaskanthan, R., Patel, V. (eds) Handbook of Food Fortification and Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7076-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7076-2_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7075-5

  • Online ISBN: 978-1-4614-7076-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics