Skip to main content

Iron and Zinc Enhancement in Rice Endosperm by Targeted and Synergistic Action of Genes

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

Iron deficiency anemia and zinc deficiency are among the most recognized forms of micronutrient malnutrition in humans. Various food fortification approaches have been suggested, but not many proved useful mainly due to socioeconomic or biological reasons. Monotonous diets based on staple cereals are frequently associated with human micronutrient malnutrition. Cereal grains constituting the most important basis of human food are in fact a poor source of iron and zinc. Biofortification of cereal grains, such as rice, has therefore emerged as a promising strategy. However, the variability for most micronutrients is very low in the rice germplasm and this does not leave traditional breeding alone to be a valid option for rice biofortification in many circumstances. Complementing the breeding efforts, gene technology offers perspectives for efficiently improving iron and zinc content in rice grain to dietary significant levels for human nutrition. In this chapter, the biotechnology strategies used to date in order to improve rice for iron and zinc content and the genes controlling iron and zinc homeostasis are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CGIAR:

Consultative Group on International Agricultural Research

FeSO4 :

Ferrous sulfate

Fe:

Iron

Zn:

Zinc

Mn:

Manganese

Co:

Cobalt

Cd:

Cadmium

Ni:

Nickel

References

  1. World Health Organization (WHO). Micronutrient deficiencies: iron deficiency anemia. http://www.who.int/nutrition/topics/ida/en/index.html. Assessed June 27, 2011.

  2. Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ. 2007;30(3):271–90.

    Article  PubMed  CAS  Google Scholar 

  3. Institute of Medicine (IOM), Food and Nutrition information centre, USDA. http://www.iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/Nutrition/DRIs/New%20Material/5DRI%20Values%20SummaryTables%2014.pdf. Assessed July 17, 2011.

  4. Tauris B, Borg S, Gregersen PL, Holm PB. A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot. 2009;60(4):1333–47.

    Article  PubMed  CAS  Google Scholar 

  5. Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric. 2000;80(7):861–79.

    Article  CAS  Google Scholar 

  6. Mayer JE, Pfeiffer WH, Beyer P. Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol. 2008;11(2):166–70.

    Article  PubMed  CAS  Google Scholar 

  7. Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461S–7.

    Article  PubMed  CAS  Google Scholar 

  8. Kennedy G, Burlingame B, Nguyen VN. Nutritional contribution of rice and impact of biotechnology and biodiversity in rice-consuming countries. In: Proceedings of the 20th Session of the International Rice Commission; July 23-26; 2002; Bangkok; Thailand. http://www.fao.org/docrep/006/y4751e/y4751e05.htm#bm05. Assessed September 29, 2011.

  9. Gregorio GB, Senadhira D, Htut H, Graham RD. Breeding for trace mineral density in rice. Food Nutr Bull. 2000;21:382–6.

    Google Scholar 

  10. Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot. 2004;55(396):353–64.

    Article  PubMed  CAS  Google Scholar 

  11. Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res. 1999;60(1–2):57–80.

    Article  Google Scholar 

  12. Guttieri M, Bowen D, Dorsch JA, Raboy V, Souza E. Identification and characterization of a low phytic acid wheat. Crop Sci. 2004;44(2):418–24.

    Article  CAS  Google Scholar 

  13. Raboy V. Progress in breeding low phytate crops. J Nutr. 2002;132(3):503S–5.

    PubMed  Google Scholar 

  14. Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil. 2008;302(1–2):1–17.

    CAS  Google Scholar 

  15. Cakmak I, Pfeiffer WH, McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010;87(1):10–20.

    Article  CAS  Google Scholar 

  16. Wissuwa M, Ismail AM, Graham RD. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil. 2008;306(1–2):37–48.

    Article  CAS  Google Scholar 

  17. Jin F, Frohman C, Thannhauser TW, Welch RM, Glahn RP. Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion-Caco-2 cell model. Br J Nutr. 2009;101:972–81.

    Article  PubMed  CAS  Google Scholar 

  18. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol. 1999;17:282–6.

    Article  PubMed  CAS  Google Scholar 

  19. Lucca P, Hurrell R, Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet. 2001;102(2–3):392–7.

    Article  CAS  Google Scholar 

  20. Furtado A, Henry RJ, Takaiwa F. Comparison of promoters in transgenic rice. Plant Biotechnol J. 2008;6(7):679–93.

    Article  PubMed  CAS  Google Scholar 

  21. Vasconcelos M, Datta K, Oliva N, et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 2003;164(3):371–8.

    Article  CAS  Google Scholar 

  22. Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F. Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta. 2005;222(2):225–33.

    Article  CAS  Google Scholar 

  23. Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 2009;32(4):408–16.

    Article  PubMed  CAS  Google Scholar 

  24. Ishimaru Y, Masuda H, Bashir K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 2010;62(3):379–90.

    Article  PubMed  CAS  Google Scholar 

  25. Masuda H, Usuda K, Kobayashi T, et al. Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice. 2009;2(4):155–66.

    Article  Google Scholar 

  26. Lee S, Jeon US, Lee SJ, et al. Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A. 2009;106(51):22014–9.

    Article  PubMed  CAS  Google Scholar 

  27. Wirth J, Poletti S, Aeschlimann B, et al. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J. 2009;7(7):631–44.

    Article  PubMed  CAS  Google Scholar 

  28. Masuda H, Suzuki M, Morikawa KC, et al. Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice. 2008;1(1):100–8.

    Article  Google Scholar 

  29. Johnson AAT, Kyriacou B, Callahan DL, et al. Constitutive overexpression of the OsNAS Gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One. 2011;6(9):e24476. doi:10.1371/journal.pone. 0024476.

    Article  PubMed  CAS  Google Scholar 

  30. ISAAA, Global Status of Commercialized Biotech/GM Crops: 2010. http://www.isaaa.org/resources/publications/briefs/42/executivesummary/default.asp. Assessed September 28, 2011.

  31. Ye X, Al-Babili S, Klöti A, et al. Engineering the provitamin A (β-Carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000;287(5451):303–5.

    Article  PubMed  CAS  Google Scholar 

  32. Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA. Golden Rice is an effective source of vitamin A. Am J Clin Nutr. 2009;89(6):1776–83.

    Article  PubMed  CAS  Google Scholar 

  33. Stein AJ, Sachdev HPS, Qaim M. Genetic engineering for the poor: golden rice and public health in India. World Dev. 2008;3(1):144–58.

    Article  Google Scholar 

  34. Potrykus I. Regulation must be revolutionized. Nature. 2010;466(7306):561.

    Article  PubMed  CAS  Google Scholar 

  35. Santi S, Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 2009;183(4):1072–84.

    Article  PubMed  CAS  Google Scholar 

  36. Robinson NJ, Procter CM, Connolly EL, Guerinot ML. A ferric-chelate reductase for iron uptake from soils. Nature. 1999;397(6721):694–7.

    Article  PubMed  CAS  Google Scholar 

  37. Connolly EL, Fett JP, Guerinot ML. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell. 2002;14(6):1347–57.

    Article  PubMed  CAS  Google Scholar 

  38. Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol. 1999;40(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  39. Palmer CM, Guerinot ML. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol. 2009;5(5):333–40.

    Article  PubMed  CAS  Google Scholar 

  40. Kobayashi T, Nakanishi H, Nishizawa NK. Recent insights into iron homeostasis and their application in graminaceous crops. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(9):900–13.

    Article  PubMed  CAS  Google Scholar 

  41. Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and are differentially regulated by iron. Plant J. 2003;36(3):366–81.

    Article  PubMed  CAS  Google Scholar 

  42. Ishimaru Y, Bashir K, Nishizawa NK. Zn uptake and translocation in rice plants. Rice. 2011;4(1):21–7.

    Article  Google Scholar 

  43. Inoue H, Takahashi M, Kobayashi T, et al. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol. 2008;66(1–2):193–203.

    Article  PubMed  CAS  Google Scholar 

  44. Bashir K, Inoue H, Nagasaka S, et al. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem. 2006;281(43):32395–402.

    Article  PubMed  CAS  Google Scholar 

  45. Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T. A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J. 2006;46(4):563–72.

    Article  PubMed  CAS  Google Scholar 

  46. Inoue H, Kobayashi T, Nozoye T, et al. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem. 2009;284(6):3470–9.

    Article  PubMed  CAS  Google Scholar 

  47. Cheng L, Wang F, Shou H, et al. Mutation in nicotianamine aminotransferase stimulated the fe(II) acquisition system and led to iron accumulation in rice. J Plant Physiol. 2007;145(4):1647–57.

    Article  CAS  Google Scholar 

  48. Ishimaru Y, Suzuki M, Tsukamoto T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 2006;45(3):335–46.

    Article  PubMed  CAS  Google Scholar 

  49. Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem. 2004;279(10):9091–6.

    Article  PubMed  CAS  Google Scholar 

  50. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA. 1998;95(12):7220–4.

    Article  PubMed  CAS  Google Scholar 

  51. Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol. 2010;73(4–5):507–17.

    Article  PubMed  CAS  Google Scholar 

  52. Jeong J, Guerinot ML. Homing in on iron homeostasis in plants. Trends Plant Sci. 2009;14(5):280–5.

    Article  PubMed  CAS  Google Scholar 

  53. Durrett TP, Gassmann W, Rogers EE. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 2007;144(1):197–205.

    Article  PubMed  CAS  Google Scholar 

  54. Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol. 2009;149(1):297–305.

    Article  PubMed  CAS  Google Scholar 

  55. Morrissey J, Baxter IR, Lee J, et al. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell. 2009;21(10):3326–38.

    Article  PubMed  CAS  Google Scholar 

  56. Hussain D, Haydon MJ, Wang Y, et al. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell. 2004;16(5):1327–39.

    Article  PubMed  CAS  Google Scholar 

  57. Curie C, Cassin G, Couch D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot. 2009;103(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  58. Koike S, Inoue H, Mizuno D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J. 2004;39(3):415–24.

    Article  PubMed  CAS  Google Scholar 

  59. Kim SA, Punshon T, Lanzirotti A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science. 2006;314(5803):1295–8.

    Article  PubMed  CAS  Google Scholar 

  60. Conte SS, Walker EL. Transporters contributing to iron trafficking in plants. Mol Plant. 2011;4(3):464–76.

    Article  PubMed  CAS  Google Scholar 

  61. Lanquar V, Lelièvre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 2005;24(23):4041–51.

    Article  PubMed  CAS  Google Scholar 

  62. Kobae Y, Uemura T, Sato MH, et al. Zinc Transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol. 2004;45(12):1749–58.

    Article  PubMed  CAS  Google Scholar 

  63. Arrivault S, Senger T, Krämer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J. 2006;46(5):861–79.

    Article  PubMed  CAS  Google Scholar 

  64. Duy D, Wanner G, Meda AR, von Wirén N, Soll J, Philippar K. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell. 2007;19(3):986–1006.

    Article  PubMed  CAS  Google Scholar 

  65. Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA. 2008;105(30):10619–24.

    Article  PubMed  CAS  Google Scholar 

  66. Ishimaru Y, Bashir K, Fujimoto M, et al. Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. Mol Plant. 2009;2(5):1059–66.

    Article  PubMed  CAS  Google Scholar 

  67. Kobayashi T, Nakayama Y, Itai RN, et al. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root specific expression in heterogeneous tobacco plants. Plant J. 2003;36(6):780–93.

    Article  PubMed  CAS  Google Scholar 

  68. Kobayashi T, Ogo Y, Itai RN, et al. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci USA. 2007;104(48):19150–5.

    Article  PubMed  CAS  Google Scholar 

  69. Ogo Y, Kobayashi T, Itai RN, et al. A novel NAC transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem. 2008;283(19):13407–17.

    Article  PubMed  CAS  Google Scholar 

  70. Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, Nishizawa NK. Rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J. 2012;69(1):81–91. doi:10.1111/j.1365-313X.2011.04772.x.

    Article  PubMed  CAS  Google Scholar 

  71. Ogo Y, Itai RN, Nakanishi H, et al. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot. 2006;57(11):2867–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank ETH Zurich and Swiss State Secretariat for Education and Research for funding our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navreet K. Bhullar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhullar, N.K., Boonyaves, K., Wang, M., Sautter, C. (2013). Iron and Zinc Enhancement in Rice Endosperm by Targeted and Synergistic Action of Genes. In: Preedy, V., Srirajaskanthan, R., Patel, V. (eds) Handbook of Food Fortification and Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7076-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7076-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7075-5

  • Online ISBN: 978-1-4614-7076-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics