Skip to main content

Two Birds with a Stone: Molecular Cancer Therapy Targeting Signal Transduction and DNA Repair Pathways

  • Chapter
  • First Online:
Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 1))

  • 1800 Accesses

Abstract

The hallmarks of cancer cells are a higher proliferative activity and an aberrant genotype with respect to normal cells. These features can be exploited for the development of selective chemotherapeutic treatments against cancer. In particular, the connections among signal transduction pathways, cell cycle checkpoints and DNA replication and repair have the potential to provide new venues for the treatment of cancer. Here, we will review how the differences existing between normal and tumour cells, with respect to control of cell proliferation and maintenance of the genetic stability, can be exploited in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BIR:

Break induced replication

CK2:

Casein kinase II

CML:

Chronic myeloid leukemia

DDR:

DNA damage response

DSBs:

Double strand breaks

GISTs:

Gastrointestinal stromal tumours

HER-2:

Human epidermal growth factor receptor 2

MMEJ:

Microhomology-mediated end joining

NRTKs:

Non receptor tyrosine kinases

NSCLC:

Non-small cell lung cancer

PDGFR:

Platelet-derived growth factor receptor

PTEN:

Phosphatase and tensin homology protein

SFK:

Src family kinase

SH2:

Src homology-2

SH3:

Src homology-3

SSA:

Single-strand annealing

SSBs:

Single strand-breaks

STKs:

Serine-threonine kinases

TKs:

Tyrosine kinases

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Colicelli J. Abl Tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal. 2010;3:re6.

    PubMed  Google Scholar 

  2. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic Myeloid Leukemia. Blood. 2000;96:3343–56.

    PubMed  CAS  Google Scholar 

  3. Carroll WL, Bhojwani D, Min DJ, Raetz E, Relling M, Davies S, Downing JR, Willman CL, Reed JC. Pediatric acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2003;2003:102–31.

    Google Scholar 

  4. De Keersmaecker K, Graux C, Odero MD, Mentens N, Somers R, Maertens J, Wlodarska I, Vandenberghe P, Hagemeijer A, Marynen P, Cools J. Fusion of eml1 to Abl1 in T-cell acute lymphoblastic leukemia with cryptic T(9;14)(Q34;Q32). Blood. 2005;105:4849–52.

    PubMed  Google Scholar 

  5. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, Vermeesch JR, Stul M, Dutta B, Boeckx N, Bosly A, Heimann P, Uyttebroeck A, Mentens N, Somers R, MacLeod RA, Drexler HG, Look AT, Gilliland DG, Michaux L, Vandenberghe P, Wlodarska I, Marynen P, Hagemeijer A. Fusion of Nup214 to Abl1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36:1084–9.

    PubMed  CAS  Google Scholar 

  6. Zuna J, Zaliova M, Muzikova K, Meyer C, Lizcova L, Zemanova Z, Brezinova J, Votava F, Marschalek R, Stary J, Trka J. Acute leukemias with Etv6/Abl1 (Tel/Abl) fusion: poor prognosis and prenatal origin. Genes Chromosom Cancer. 2010;49:873–84.

    PubMed  CAS  Google Scholar 

  7. Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi-Ishimae M, Kamada N, Kishi K, Asano S, Sakaki Y, Sato Y. A new Etv6/Tel partner Gene, Arg (Abl-Related Gene or Abl2), identified in an Aml-M3 cell line with a T(1;12)(Q25;P13) translocation. Blood. 2000;95:2126–31.

    PubMed  CAS  Google Scholar 

  8. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for Sti-571 inhibition of abelson tyrosine kinase. Science. 2000;289:1938–42.

    PubMed  CAS  Google Scholar 

  9. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    PubMed  CAS  Google Scholar 

  10. Gambacorti-Passerini C, le Coutre P, Mologni L, Fanelli M, Bertazzoli C, Marchesi E, Di Nicola M, Biondi A, Corneo GM, Belotti D, Pogliani E, Lydon NB. Inhibition of the Abl kinase activity blocks the proliferation of Bcr/Abl+ leukemic cells and induces apoptosis. Blood Cells Mol Dis. 1997;23:380–94.

    PubMed  CAS  Google Scholar 

  11. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59:21–6.

    PubMed  CAS  Google Scholar 

  12. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M, Insa A, Massuti B, Gonzalez-Larriba JL, Paz-Ares L, Bover I, Garcia-Campelo R, Moreno MA, Catot S, Rolfo C, Reguart N, Palmero R, Sanchez JM, Bastus R, Mayo C, Bertran-Alamillo J, Molina MA, Sanchez JJ, Taron M. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361:958–67.

    PubMed  CAS  Google Scholar 

  13. Yang CH, Yu CJ, Shih JY, Chang YC, Hu FC, Tsai MC, Chen KY, Lin ZZ, Huang CJ, Shun CT, Huang CL, Bean J, Cheng AL, Pao W, Yang PC. Specific Egfr mutations predict treatment outcome of stage Iiib/Iv patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy. J Clin Oncol. 2008;26:2745–53.

    PubMed  CAS  Google Scholar 

  14. Olayioye M. Intracellular signaling pathways of Erbb2/Her-2 and family members. Breast Cancer Res. 2001;3:385–9.

    PubMed  CAS  Google Scholar 

  15. Hynes NE, Schlange T. Targeting Adams and Erbbs in lung cancer. Cancer Cell. 2006;10:7–11.

    PubMed  CAS  Google Scholar 

  16. Medina PJ, Goodin S. Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 2008;30:1426–47.

    PubMed  CAS  Google Scholar 

  17. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, Horne E, Lackey K, Alligood KJ, Rusnak DW, Gilmer TM, Shewchuk L. A unique structure for epidermal growth factor receptor bound to Gw572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumour cells. Cancer Res. 2004;64:6652–9.

    PubMed  CAS  Google Scholar 

  18. Gambacorti-Passerini CB, Rossi F, Verga M, Ruchatz H, Gunby R, Frapolli R, Zucchetti M, Scapozza L, Bungaro S, Tornaghi L, Rossi F, Pioltelli P, Pogliani E, D’Incalci M, Corneo G. Differences between in vivo and in vitro sensitivity to imatinib of Bcr/Abl plus cells obtained from leukemic patients. Blood Cells Mol Dis. 2002;28:361–72.

    PubMed  Google Scholar 

  19. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV. Selection and characterization of Bcr-Abl positive cell lines with differential sensitivity to the tyrosine kinase inhibitor Sti571: diverse mechanisms of resistance. Blood. 2000;96:1070–9.

    PubMed  CAS  Google Scholar 

  20. Weisberg E, Griffin JD. Mechanism of resistance to the Abl tyrosine kinase inhibitor Sti571 in Bcr/Abl-transformed hematopoietic cell lines. Blood. 2000;95:3498–505.

    PubMed  CAS  Google Scholar 

  21. Apperley JF, Part I. Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8:1018–29.

    PubMed  CAS  Google Scholar 

  22. Deininger MW, Cortes J, Paquette R, Park B, Hochhaus A, Baccarani M, Stone R, Fischer T, Kantarjian H, Niederwieser D, Gambacorti-Passerini C, So C, Gathmann I, Goldman JM, Smith D, Druker BJ, Guilhot F. The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in Philadelphia chromosome-negative cells. Cancer. 2007;110:1509–19.

    PubMed  Google Scholar 

  23. Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A, Iacobucci I, Amabile M, Abruzzese E, Orlandi E, Radaelli F, Ciccone F, Tiribelli M, di Lorenzo R, Caracciolo C, Izzo B, Pane F, Saglio G, Baccarani M, Martinelli G. Contribution of Abl kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the gimema working party on chronic myeloid leukemia. Clin Cancer Res. 2006;12:7374–9.

    PubMed  CAS  Google Scholar 

  24. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T, Fenaux P, Preudhomme C. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to Sti571, and they can pre-exist to the onset of treatment. Blood. 2002;100:1014–8.

    PubMed  CAS  Google Scholar 

  25. Griswold IJ, MacPartlin M, Bumm T, Goss VL, O’Hare T, Lee KA, Corbin AS, Stoffregen EP, Smith C, Johnson K, Moseson EM, Wood LJ, Polakiewicz RD, Druker BJ, Deininger MW. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol. 2006;26:6082–93.

    PubMed  CAS  Google Scholar 

  26. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of C-kit receptor tyrosine kinase activity by Sti 571, a selective tyrosine kinase inhibitor. Blood. 2000;96:925–32.

    PubMed  CAS  Google Scholar 

  27. Duensing A, Medeiros F, McConarty B, Joseph NE, Panigrahy D, Singer S, Fletcher CD, Demetri GD, Fletcher JA. Mechanisms of oncogenic kit signal transduction in primary gastrointestinal stromal tumours (Gists). Oncogene. 2004;23:3999–4006.

    PubMed  CAS  Google Scholar 

  28. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ, Eisenberg BL, von Mehren M, Fletcher CD, Sandau K, McDougall K, Ou WB, Chen CJ, Fletcher JA. Molecular correlates of imatinib resistance in gastrointestinal stromal tumours. J Clin Oncol. 2006;24:4764–74.

    PubMed  CAS  Google Scholar 

  29. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP. Structural basis for the autoinhibition and Sti-571 inhibition of C-kit tyrosine kinase. J Biol Chem. 2004;279:31655–63.

    PubMed  CAS  Google Scholar 

  30. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA. Met amplification leads to gefitinib resistance in lung cancer by activating Erbb3 signaling. Science. 2007;316:1039–43.

    PubMed  CAS  Google Scholar 

  31. Miller CT, Lin L, Casper AM, Lim J, Thomas DG, Orringer MB, Chang AC, Chambers AF, Giordano TJ, Glover TW, Beer DG. Genomic amplification of met with boundaries within fragile site Fra7g and upregulation of met pathways in esophageal adenocarcinoma. Oncogene. 2006;25:409–18.

    PubMed  CAS  Google Scholar 

  32. Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H, Kim WJ, Okimoto RA, Bell DW, Sgroi DC, Christensen JG, Settleman J, Haber DA. Amplification of met may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor pha-665752. Proc Natl Acad Sci USA. 2006;103:2316–21.

    PubMed  CAS  Google Scholar 

  33. McDermott U, Pusapati RV, Christensen JG, Gray NS, Settleman J. Acquired resistance of non-small cell lung cancer cells to met kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res. 2010;70:1625–34.

    PubMed  CAS  Google Scholar 

  34. Engelman JA, Jänne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C, Cichowski K, Johnson BE, Cantley LC. Erbb-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA. 2005;102:3788–93.

    PubMed  CAS  Google Scholar 

  35. Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borrás AM, Gale C-M, Naumov GN, Yeap BY, Jarrell E, Sun J, Tracy S, Zhao X, Heymach JV, Johnson BE, Cantley LC, Jänne PA. Allelic dilution obscures detection of a biologically significant resistance mutation in Egfr-amplified lung cancer. J Clin Invest. 2006;116:2695–706.

    PubMed  CAS  Google Scholar 

  36. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE. Kras mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2:e17.

    PubMed  Google Scholar 

  37. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, Halsey W, Sathe GM, Martin A-M, Gilmer TM. Novel mechanism of lapatinib resistance in Her2-positive breast tumour cells: activation of Axl. Cancer Res. 2009;69:6871–8.

    PubMed  CAS  Google Scholar 

  38. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Azam M, Neuberg D, Wright RD, Gilliland DG, Griffin JD. Characterization of Amn107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.

    PubMed  CAS  Google Scholar 

  39. Redaelli S, Piazza R, Rostagno R, Magistroni V, Perini P, Marega M, Gambacorti-Passerini C, Boschelli F. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant Bcr/Abl mutants. J Clin Oncol. 2009;27:469–71.

    PubMed  CAS  Google Scholar 

  40. Olivieri A, Manzione L. Dasatinib: a new step in molecular target therapy. Ann Oncol. 2007;18(6):vi42–6.

    PubMed  Google Scholar 

  41. Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, Kish K, Lee FY, Borzillerri R, Lombardo LJ, Xie D, Zhang Y, Klei HE. The structure of dasatinib (Bms-354825) bound to activated abl kinase domain elucidates its inhibitory activity against imatinib-resistant abl mutants. Cancer Res. 2006;66:5790–7.

    PubMed  CAS  Google Scholar 

  42. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J, Frost P, Ye F, Boschelli DH, Boschelli F. Ski-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of src and abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 2003;63:375–81.

    PubMed  CAS  Google Scholar 

  43. Kantarjian H, le Coutre P, Cortes J, Pinilla-Ibarz J, Nagler A, Hochhaus A, Kimura S, Ottmann O. Phase 1 study of inno-406, a dual Abl/Lyn kinase inhibitor, in Philadelphia chromosome-positive leukemias after imatinib resistance or intolerance. Cancer. 2010;116:2665–72.

    PubMed  CAS  Google Scholar 

  44. Boschelli F, Arndt K, Gambacorti-Passerini C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer. 2010;46:1781–9.

    PubMed  CAS  Google Scholar 

  45. Puttini M, Coluccia AML, Boschelli F, Cleris L, Marchesi E, Donella-Deana A, Ahmed S, Redaelli S, Piazza R, Magistroni V, Andreoni F, Scapozza L, Formelli F, Gambacorti-Passerini C. In vitro and in vivo activity of Ski-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl(+) neoplastic cells. Cancer Res. 2006;66:11314–22.

    PubMed  CAS  Google Scholar 

  46. Guo T, Agaram NP, Wong GC, Hom G, D’Adamo D, Maki RG, Schwartz GK, Veach D, Clarkson BD, Singer S, DeMatteo RP, Besmer P, Antonescu CR. Sorafenib inhibits the imatinib-resistant kitt670i gatekeeper mutation in gastrointestinal stromal tumour. Clin Cancer Res. 2007;13:4874–81.

    PubMed  CAS  Google Scholar 

  47. Janne PA. Challenges of detecting Egfr T790m in Gefitinib/Erlotinib-resistant tumours. Lung Cancer. 2008;60(2):S3–9.

    PubMed  Google Scholar 

  48. Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9:75–85.

    PubMed  Google Scholar 

  49. Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28:1254–61.

    PubMed  CAS  Google Scholar 

  50. Prenen H, Cools J, Mentens N, Folens C, Sciot R, Schoffski P, Van Oosterom A, Marynen P, Debiec-Rychter M. Efficacy of the kinase inhibitor Su11248 against gastrointestinal stromal tumour Mutants refractory to imatinib mesylate. Clin Cancer Res. 2006;12:2622–7.

    PubMed  CAS  Google Scholar 

  51. Ibrahim N, Yu Y, Walsh WR, Yang JL. Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (Review). Oncol Rep. 2012;27:1303–11.

    PubMed  CAS  Google Scholar 

  52. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol. 2011;29:1039–45.

    PubMed  CAS  Google Scholar 

  53. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29:1046–51.

    PubMed  CAS  Google Scholar 

  54. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994;372:739–46.

    PubMed  CAS  Google Scholar 

  55. Astsaturov I, Ratushny V, Sukhanova A, Einarson MB, Bagnyukova T, Zhou Y, Devarajan K, Silverman JS, Tikhmyanova N, Skobeleva N, Pecherskaya A, Nasto RE, Sharma C, Jablonski SA, Serebriiskii IG, Weiner LM, Golemis EA. Synthetic lethal screen of an Egfr-Centered network to improve targeted therapies. Sci Signal. 2010;3:67.

    Google Scholar 

  56. Belzile JP, Choudhury SA, Cournoyer D, Chow TY. Targeting DNA repair proteins: a promising avenue for cancer gene therapy. Curr Gene Ther. 2006;6:111–23.

    PubMed  CAS  Google Scholar 

  57. Kennedy RD, D’Andrea AD. DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol. 2006;24:3799–808.

    PubMed  CAS  Google Scholar 

  58. Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, Vodicka P. Mutations and polymorphisms in Tp53 gene–an overview on the role in colorectal cancer. Mutagenesis. 2012;27:211–8.

    PubMed  CAS  Google Scholar 

  59. Frebourg T, Friend SH. Cancer risks from germline P53 mutations. J Clin Invest. 1992;90:1637–41.

    PubMed  CAS  Google Scholar 

  60. George B, Datar RH, Wu L, Cai J, Patten N, Beil SJ, Groshen S, Stein J, Skinner D, Jones PA, Cote RJ. P53 gene and protein status: the role of P53 alterations in predicting outcome in patients with bladder cancer. J Clin Oncol. 2007;25:5352–8.

    PubMed  CAS  Google Scholar 

  61. Knappskog S, Lonning PE. P53 and its molecular basis to chemoresistance in breast cancer. Expert Opin Ther Targets. 2012;16(1):S23–30.

    PubMed  CAS  Google Scholar 

  62. Karahalil B, Bohr V, Wilson D 3rd. Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Hum Exp Toxicol. 2012;31:981–1005.

    PubMed  CAS  Google Scholar 

  63. Attar R, Cacina C, Sozen S, Attar E, Agachan B. DNA repair genes in endometriosis. Genet Mol Res. 2010;9:629–36.

    PubMed  CAS  Google Scholar 

  64. Chen PL, Yeh KT, Tsai YY, Koeh H, Liu YL, Lee H, Cheng YW. Xrcc1, but not Ape1 and Hogg1 gene polymorphisms is a risk factor for pterygium. Mol Vis. 2010;16:991–6.

    PubMed  CAS  Google Scholar 

  65. Lo YL, Jou YS, Hsiao CF, Chang GC, Tsai YH, Su WC, Chen KY, Chen YM, Huang MS, Hu CY, Chen CJ, Hsiung CA. A polymorphism in the Ape1 gene promoter is associated with lung cancer risk. Cancer Epidemiol Biomark Prev. 2009;18:223–9.

    CAS  Google Scholar 

  66. Cui Z, Yin Z, Li X, Wu W, Guan P, Zhou B. Association between polymorphisms in Xrcc1 gene and clinical outcomes of patients with lung cancer: a meta-analysis. BMC Cancer. 2012;12:71–83.

    PubMed  CAS  Google Scholar 

  67. Nielsen M, Morreau H, Vasen HF, Hes FJ. Mutyh-associated polyposis (Map). Crit Rev Oncol Hematol. 2011;79:1–16.

    PubMed  Google Scholar 

  68. Ripperger T, Beger C, Rahner N, Sykora KW, Bockmeyer CL, Lehmann U, Kreipe HH, Schlegelberger B. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma–report on a novel Biallelic Msh6 mutation. Haematologica. 2010;95:841–4.

    PubMed  CAS  Google Scholar 

  69. Martin SA, Lord CJ, Ashworth A. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res. 2010;16:5107–13.

    PubMed  CAS  Google Scholar 

  70. Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12:587–98.

    PubMed  CAS  Google Scholar 

  71. Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(Adp-Ribose) polymerase (Parp) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA. 2011;108:3406–11.

    PubMed  CAS  Google Scholar 

  72. Crespan E, Czabany T, Maga G, Hubscher U. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases lambda and beta on normal and repetitive DNA sequences. Nucleic Acids Res. 2012;40:5577–90.

    PubMed  CAS  Google Scholar 

  73. Albertella MR, Lau A, O’Connor MJ. The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst). 2005;4:583–93.

    CAS  Google Scholar 

  74. Brabec V, Malina J, Margiotta N, Natile G, Kasparkova J. Thermodynamic and mechanistic insights into translasion DNA synthesis catalyzed by Y-family DNA polymerase across a Bulky double-base lesion of an antitumour platinum drug. Chemistry. 2012;18:15439–48.

    PubMed  CAS  Google Scholar 

  75. Lee GH, Matsushita H. Genetic linkage between Pol iota deficiency and increased susceptibility to lung tumours in mice. Cancer Sci. 2005;96:256–9.

    PubMed  CAS  Google Scholar 

  76. Ziv O, Geacintov N, Nakajima S, Yasui A, Livneh Z. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from Xpv patients. Proc Natl Acad Sci USA. 2009;106:11552–7.

    PubMed  CAS  Google Scholar 

  77. Guo C, Kosarek-Stancel JN, Tang TS, Friedberg EC. Y-family DNA polymerases in mammalian cells. Cell Mol Life Sci. 2009;66:2363–81.

    PubMed  CAS  Google Scholar 

  78. Chiu A, Pan L, Li Z, Ely S, Chadburn A, Knowles DM. DNA polymerase mu gene expression in B-cell non-Hodgkin’s lymphomas: an analysis utilizing in situ hybridization. Am J Pathol. 2002;161:1349–55.

    PubMed  CAS  Google Scholar 

  79. Kodama EN, McCaffrey RP, Yusa K, Mitsuya H. Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (Tdt+) leukemic cells. Biochem Pharmacol. 2000;59:273–81.

    PubMed  CAS  Google Scholar 

  80. Hubscher U, Maga G, Spadari S. Eukaryotic DNA polymerases. Annu Rev Biochem. 2002;71:133–63.

    PubMed  CAS  Google Scholar 

  81. Sugo N, Aratani Y, Nagashima Y, Kubota Y, Koyama H. Neonatal lethality with abnormal neurogenesis in mice deficient in DNA polymerase beta. EMBO J. 2000;19:1397–404.

    PubMed  CAS  Google Scholar 

  82. Yang J, Parsons J, Nicolay NH, Caporali S, Harrington CF, Singh R, Finch D, D’Atri S, Farmer PB, Johnston PG, McKenna WG, Dianov G, Sharma RA. Cells deficient in the base excision repair protein, DNA polymerase beta, Are hypersensitive to Oxaliplatin Chemotherapys. Oncogene. 2010;29:463–8.

    PubMed  CAS  Google Scholar 

  83. Ochs K, Lips J, Profittlich S, Kaina B. Deficiency in DNA polymerase beta provokes replication-dependent apoptosis via DNA breakage, Bcl-2 decline and caspase-3/9 activation. Cancer Res. 2002;62:1524–30.

    PubMed  CAS  Google Scholar 

  84. Di Santo R, Maga G. Human terminal deoxynucleotidyl transferases as novel targets for anticancer chemotherapy. Curr Med Chem. 2006;13:2353–68.

    PubMed  Google Scholar 

  85. Maga G, Hubscher U. Repair and translesion DNA polymerases as anticancer drug targets. Anticancer Agents Med Chem. 2008;8:431–47.

    PubMed  CAS  Google Scholar 

  86. Bertocci B, De Smet A, Flatter E, Dahan A, Bories JC, Landreau C, Weill JC, Reynaud CA. Cutting edge: DNA polymerases Mu and Lambda are dispensable for Ig gene hypermutation. J Immunol. 2002;168:3702–6.

    PubMed  CAS  Google Scholar 

  87. Bertocci B, De Smet A, Weill JC, Reynaud CA. Nonoverlapping functions of DNA polymerases Mu, Lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo. Immunity. 2006;25:31–41.

    PubMed  CAS  Google Scholar 

  88. Terrados G, Capp JP, Canitrot Y, Garcia-Diaz M, Bebenek K, Kirchhoff T, Villanueva A, Boudsocq F, Bergoglio V, Cazaux C, Kunkel TA, Hoffmann JS, Blanco L. Characterization of a natural mutator variant of human DNA polymerase Lambda which promotes chromosomal instability by compromising Nhej. PLoS One. 2009;4:e7290.

    PubMed  Google Scholar 

  89. Ohba T, Kometani T, Shoji F, Yano T, Yoshino I, Taguchi K, Kuraoka I, Oda S, Maehara Y. Expression of an X-family DNA polymerase, Pol Lambda, in the respiratory epithelium of non-small cell lung cancer patients with habitual smoking. Mutat Res. 2009;677:66–71.

    PubMed  CAS  Google Scholar 

  90. Locatelli GA, Di Santo R, Crespan E, Costi R, Roux A, Hubscher U, Shevelev I, Blanca G, Villani G, Spadari S, Maga G. Diketo Hexenoic acid derivatives are novel selective non-nucleoside inhibitors of mammalian terminal deoxynucleotidyl transferases, with potent cytotoxic effect against leukemic cells. Mol Pharmacol. 2005;68:538–50.

    PubMed  CAS  Google Scholar 

  91. Garcia-Diaz M, Murray MS, Kunkel TA, Chou KM. Interaction between DNA polymerase Lambda and anticancer nucleoside analogs. J Biol Chem. 2010;285:16874–9.

    PubMed  CAS  Google Scholar 

  92. Lemee F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire MJ, Bieth A, Gentil C, Baker L, Martin AL, Leduc C, Lam E, Magdeleine E, Filleron T, Oumouhou N, Kaina B, Seki M, Grimal F, Lacroix-Triki M, Thompson A, Roche H, Bourdon JC, Wood RD, Hoffmann JS, Cazaux C. DNA polymerase Theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc Natl Acad Sci USA. 2010;107:13390–5.

    PubMed  CAS  Google Scholar 

  93. Pillaire MJ, Selves J, Gordien K, Gourraud PA, Gentil C, Danjoux M, Do C, Negre V, Bieth A, Guimbaud R, Trouche D, Pasero P, Mechali M, Hoffmann JS, Cazaux C. A ‘DNA replication’ signature of progression and negative outcome in colorectal cancer. Oncogene. 2010;29:876–87.

    PubMed  CAS  Google Scholar 

  94. Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ, Taylor S, Yoshimura M, Hickson ID, Bernhard EJ, McKenna WG. A small interfering RNA screen of genes involved in DNA repair identifies tumour-specific radiosensitization by POLQ knockdown. Cancer Res. 2010;70:2984–93.

    PubMed  CAS  Google Scholar 

  95. Crespan E, Garbelli A, Amoroso A, Maga G. Exploiting the nucleotide substrate specificity of repair DNA polymerases to develop novel anticancer agents. Molecules. 2011;16:7994–8019.

    PubMed  CAS  Google Scholar 

  96. Motea EA, Lee I, Berdis AJ. A non-natural nucleoside with combined therapeutic and diagnostic activities against leukemia. ACS Chem Biol. 2012;7:988–98.

    PubMed  CAS  Google Scholar 

  97. Skorski T. Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer. 2002;2:351–60.

    PubMed  CAS  Google Scholar 

  98. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M, Blasiak J, Skorski T. Bcr/Abl kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108:319–27.

    PubMed  CAS  Google Scholar 

  99. Slupianek A, Poplawski T, Jozwiakowski SK, Cramer K, Pytel D, Stoczynska E, Nowicki MO, Blasiak J, Skorski T. Bcr/Abl stimulates Wrn to promote survival and genomic instability. Cancer Res. 2011;71:842–51.

    PubMed  CAS  Google Scholar 

  100. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, Skorski T. Bcr/Abl oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood. 2004;104:3746–53.

    PubMed  CAS  Google Scholar 

  101. Dai Y, Chen S, Shah R, Pei XY, Wang L, Almenara JA, Kramer LB, Dent P, Grant S. Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood. 2011;117:1947–57.

    PubMed  CAS  Google Scholar 

  102. Dai Y, Yu C, Singh V, Tang L, Wang Z, McInistry R, Dent P, Grant S. Pharmacological inhibitors of the mitogen-activated protein kinase (Mapk) kinase/mapk cascade interact synergistically with Ucn-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res. 2001;61:5106–15.

    PubMed  CAS  Google Scholar 

  103. Shaheen M, Allen C, Nickoloff JA, Hromas R. Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood. 2011;117:6074–82.

    PubMed  CAS  Google Scholar 

  104. Nowsheen S, Cooper T, Stanley JA, Yang ES. Synthetic lethal interactions between Egfr and parp inhibition in human triple negative breast cancer cells. PLoS One. 2012;7:e46614.

    PubMed  CAS  Google Scholar 

  105. Meggio F, Pinna LA. One-thousand-and-one substrates of protein kinase Ck2? FASEB J. 2003;17:349–68.

    PubMed  CAS  Google Scholar 

  106. Hanif IM, Shazib MA, Ahmad KA, Pervaiz S. Casein kinase Ii: an attractive target for anti-cancer drug design. Int J Biochem Cell Biol. 2010;42:1602–5.

    PubMed  CAS  Google Scholar 

  107. Parsons JL, Dianova II, Finch D, Tait PS, Ström CE, Helleday T, Dianov GL. Xrcc1 phosphorylation by Ck2 is required for its stability and efficient DNA repair. DNA Repair. 2010;9:835–41.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in authors’ laboratory has been partially supported by an Italian Cancer Research Association AIRC grant IG12084 to GM.

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Maga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zucca, E., Crespan, E., Bertoletti, F., Kissova, M., Maga, G. (2013). Two Birds with a Stone: Molecular Cancer Therapy Targeting Signal Transduction and DNA Repair Pathways. In: Bonavida, B. (eds) Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7070-0_9

Download citation

Publish with us

Policies and ethics