Advertisement

Polymers in Food Processing Industries

  • Ahmed Akelah
Chapter

Abstract

Chapter 4 provides the basic principles for the contribution of reactive polymers in solving problems associated with the procedures used in some areas of food production. Their broad range of applications to food industries include the various types of polymers that have interesting potential for continuous processes, in particular those used in dairy and sugar, fruit juices and beverages industries, beer and wine production. It covers also the potential uses of polymers in tomato sauce production and in potable water. Polymeric materials do not become substantial components of food and are used especially for the purification, recovery, and utilization of by-products. They serve as an aid in food processing and improve food characteristics make food more attractive. The food industry requires suitable polymers to meet the specific requirements for the food industry that simplify food production processes and reduce food production costs, do not deteriorate foods, and do not alter food characteristics. In general, the fundamental principles are based on health protection and preservation of foods quality. The reactive polymers in the form of ion exchange resins, immobilized enzymes, membranes, as well as polymeric smart and nanomaterials, have been utilized in the various areas of the food processing and fabrication industries.

Keywords

Whey Protein Reverse Osmosis Cheese Whey Tomato Juice Glucose Isomerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Helferrich, “Ion Exchange”, McGraw-Hill: New York; 1962Google Scholar
  2. 2.
    T. Garlanda, Mater Plat Elast 31, 719 & 786 (1965)Google Scholar
  3. 3.
    F. Lopez, Environment Protection Engineering, 25 (1), 103–110 (1999)Google Scholar
  4. 4.
    GR. Stark, “Immobilized Enzymes”, Academic Press, NY, 1969Google Scholar
  5. 5.
    O. Zaborsky, “Immobilized Enzymes”, CRC Press, Cleveland, OH, 1973Google Scholar
  6. 6.
    R. Goldman, L. Goldstein, E. Katchalski, in “Biochemical Aspects of Reactions on Solid Supports”, GR. Stark, ed, Academic Press, NY, Ch 1, p. 1, 1974Google Scholar
  7. 7.
    M. Salmona, C. Saronia, S. Garattini, eds, “Immobilized Enzymes”, Raven Press, NY, 1974Google Scholar
  8. 8.
    RA. Messing, ed, “Immobilized Enzymes for Industrial Reactors”, Academic Press, NY, 1975Google Scholar
  9. 9.
    HH. Weetal, ed, “Immobilized Enzymes, Antigens, Antibodies and Peptides”, Marcel Dekker, NY, 1975Google Scholar
  10. 10.
    CJ. Suckling, Chem. Soc. Rev. 6, 215 (1977)Google Scholar
  11. 11.
    I. Chibata, ed, “Immobilized Enzymes”, Halstead Press, NY, 1978Google Scholar
  12. 12.
    G. Manecke, HG. Vogl, Pure Appl.Chem. 50, 655 (1978)Google Scholar
  13. 13.
    G. Manecke, W. Storck, Angew Chem Int Ed Engl 17, 657 (1978)Google Scholar
  14. 14.
    W. Zhang. “Food enzymology”, Beijing: China Light Industry Press, 2001Google Scholar
  15. 15.
    JE. Vandegaer, ed, “Microencapsulation”, Plenum Press, NY, 1974Google Scholar
  16. 16.
    TMS. Chang, J Macromol Sci Chem A - 10, 245 (1976)Google Scholar
  17. 17.
    HD. Brown, AB. Patel, SK. Chattopadhyay, J Biomed Mater Res 2, 231 (1968)Google Scholar
  18. 18.
    AC. Johansson, K. Mosbach, Biochim Biophys Acta 370, 339 & 348 (1974)Google Scholar
  19. 19.
    L. Yanfeng, L. Rong, LF. Di, Polymer Bulletin, (2), 13–17, 23 (2001)Google Scholar
  20. 20.
    G. Royer, R. Uy; J Biol Chem 248, 2627 (1973)Google Scholar
  21. 21.
    Chao, Gao Hong, Li Ji., Chinese food additives, (3), 136–141 (2003)Google Scholar
  22. 22.
    R. Axen, J. Porath, S. Ernback, Nature 214, 1302 (1967)Google Scholar
  23. 23.
    G. Kay, EM. Cook; Nature 216, 514 (1967)Google Scholar
  24. 24.
    RP. Patel, DV. Lopiekes, SP. Brown, S. Price, Biopolym 5, 577 (1967)Google Scholar
  25. 25.
    MA. Mitz, LJ. Summaria; Nature 189, 576 (1961)Google Scholar
  26. 26.
    L. Goldstein M. Pecht, S. Blunberg, D. Atlas, Y. Levin; Biochem 9, 2322 (1970)Google Scholar
  27. 27.
    HH. Weetall; Science 166, 615 (1969)Google Scholar
  28. 28.
    Y. Lennon M. Hecht, L. Goldstein, E. Katchalsky, Biochem 3, 1905 (1964)Google Scholar
  29. 29.
    W. Stanley, R. Palter, Biotechnol Bioeng 15, 597 (1973)Google Scholar
  30. 30.
    GJ. Bartling, HD. Brown, SK. Chattopadahyay; Nature 243, 342 (1973)Google Scholar
  31. 31.
    Hu, and Bing, W. Makino, W. Yongmin, Chinese Brewing, (7), 4–7 (2006)Google Scholar
  32. 32.
    AC. Olson, CL. Cooney, eds, “Immobilized Enzymes in Food and Microbial Processes”, Plenum Press, NY, 1973Google Scholar
  33. 33.
    HH. Weetall; Pcocess Biochem 10 (6), 3 (1975)Google Scholar
  34. 34.
    T. Komaki; New Food Ind 19 (11), 2 (1977); CA. 88, 87662-f (1978)Google Scholar
  35. 35.
    A. Kilara, KM. Shahani, TP. Shukla, CRC Critical Reviews in Food Science and Nutrition, 12, (2), 161–198 (1979)Google Scholar
  36. 36.
    HE. Swaisgood, “Use of immobilized enzymes in the food industry”, in “Handbook of Food Enzymology”, JR. Whitaker, AGJ. Voragen, DWS. Wong, eds, CRC Press, Chap 24, 2002Google Scholar
  37. 37.
    J. Adler-Nissen, Trends in Biotechnol. 5 (6), 170–174 (1987)Google Scholar
  38. 38.
    CL.Hicks, LK. Ferrier, NF. Olson, T. Richardson; J Dairy Sci 58, 19 (1974)/(1975)Google Scholar
  39. 39.
    WF. Shipe, GF. Senyk, HH. Weetall; J Dairy Sci 55, 647 (1972)Google Scholar
  40. 40.
    EC. Lee, GF. Senyk, WF. Shipe; J Dairy Sci 58, 473 (1974) or (1975)Google Scholar
  41. 41.
    Y. Jun, F. Zhibiao, China Dairy Industry, 35 (6), 34–37 (2007)Google Scholar
  42. 42.
    Y-M. Sun, B-W. Zhu, M. Lianyu, Food Science and Technology, (3), 23–25 (1995)Google Scholar
  43. 43.
    L. Yan, Shandong Institute of Light Industry, 17 (3), 52–56 (2003)Google Scholar
  44. 44.
    Z. Bin, L. Jin, Food Additives (1), 147–150 (2006)Google Scholar
  45. 45.
    S. Hayashi, M. Nonokushi, K. Imada, J Ind Microbial, 11 (5), 395–400 (1990)Google Scholar
  46. 46.
    S. Hayashi, T. Hayashi, J. Kinoshita, J Ind Microbiol, 15 (9), 247–250 (1992)Google Scholar
  47. 47.
    CJ. Chiang, WC. Lee, DC. Sheu, Biotechnol Prog, 13 (4): 577–582 (1997)Google Scholar
  48. 48.
    WR. Vieth, K. Venkatasubramanian; Chem Tech 677 (1973)Google Scholar
  49. 49.
    HW. Wang. “Food Chemistry”, Beijing: Science Press, 286–287, 1992Google Scholar
  50. 50.
    P Lozano, A Manjon, F Romojaro, M Canovas, J Iborra, Biotechnol Lett 9 (12), 875–880 (1987)Google Scholar
  51. 51.
    Zhang, Biochemistry Journal, 8 (4), 462–467 (1992)Google Scholar
  52. 52.
    F. Vaillant, A. Millan, P. Millan, Process Biochemistry, (35), 989–996 (2000)Google Scholar
  53. 53.
    W. Yanmei, Q. Caihong, Zhanjiang Ocean University, 12 (4), 42–46 (2001)Google Scholar
  54. 54.
    ZB. Chao, Y. Ma, B. Shi, Food and Fermentation and Industry, 31 (10), 60–63 (2005)Google Scholar
  55. 55.
    S. Sourirajan; “Reverse Osmosis”, Logos Press, London, 1970Google Scholar
  56. 56.
    RE. Kesting, “Synthetic Polymeric Membranes”, McGraw-Hill, NY, 1971Google Scholar
  57. 57.
    HK Lonsdale, HE Podall, eds, “Reverse Osmosis Membrane Research”, Plenum Press, NY, 1972Google Scholar
  58. 58.
    S. Sourirajan, Ed, “Reverse Osmosis and Synthetic Membranes”, National Research Council of Canada Publ, Ottawa, Canada, 1977Google Scholar
  59. 59.
    BS. Shasha, WM. Doane, CR. Russell, J Polym Sci Polym Lett Ed 14, 417 (1976)Google Scholar
  60. 60.
    OB. Wurzburg, Ed, “Modified Starches: Properties and Uses”, CRC Press Inc, 1986Google Scholar
  61. 61.
    NM. Bikales, L. Segal, eds, “Investigations of the Structure of Cellulose and Its Derivatives in High Polymers”, vol 5, 2nd edn, Wiley Interscience, NY, 1971Google Scholar
  62. 62.
    HK. Lonsdale, in “Desalination by Reverse Osmosis”, U. Merten, ed, M.I.T. Press, Cambridge, Mass., (1966)Google Scholar
  63. 63.
    ET. Reese, M. Mandels, in “Cellulose and Cellulose Derivatives”, NM. Bikales, L. Segal, eds, Wiley Intersci, NY, part V, p. 1079, 1971Google Scholar
  64. 64.
    A. Meller, Hozforschung 14, 78 (1960)Google Scholar
  65. 65.
    KD. Vos, FO. Barris, RL. Riley; J Appl Polym Sci 10, 825 (1966)Google Scholar
  66. 66.
    J-M. Girardet, F. Saulnier, G. Linden, G. Humbert, Lait, 78 (4), 391–400 (1998)Google Scholar
  67. 67.
    GL. Flynn, TJ. Roseman; J Pharm Sci 60 (12), 1785 (1971)Google Scholar
  68. 68.
    CF. Most, J Appl Polym Sci 14, 1019 (1970)Google Scholar
  69. 69.
    M. Nakano, NK. Patel; J Pharm Sci 59 (1), 77 (1970)Google Scholar
  70. 70.
    CM. Clifford, CE. Yuker, MD. Corwin; J Econ Entomol 60, 1210 (1967)Google Scholar
  71. 71.
    M.Nakano, J Pharm Sci 60, 571 (1971)Google Scholar
  72. 72.
    VU. Johnson, G. Nachtrab; Angew Makromol Chem 7, 134 (1969)Google Scholar
  73. 73.
    LE. Nielsen; J Polym Sci 42, 357 (1960)Google Scholar
  74. 74.
    FP. Reding, JA. Faucher, RD. Whitman; J Polym Sci 57, 483 (1962)Google Scholar
  75. 75.
    RW. Baker, ME. Tuttle, HK. Lonsdale, JW. Ayres; J Pharm Sci 68 (1), 20 (1979)Google Scholar
  76. 76.
    MSM. Eldin, Deutsche Lebensmittel-Rundschau, 101 (5), 193–198 (2005)Google Scholar
  77. 77.
    JM. Greenwood, JS. Johnson, MJ. Witham, US Pat 6056903 (2000)Google Scholar
  78. 78.
    BJ. James, Y. Jing, XD. Chen, J. of Food Engineering, 60 (4), 431–437 (2003)Google Scholar
  79. 79.
    AE. Mathai, RP. Singh, S. Thomas, J. of Membrane Sci., 202 (1–2), 35–54 (2002)Google Scholar
  80. 80.
    G Daufin, H Carrere, J Escudier, S Berot, L Fillaudeau, M Decloux, Corrosion (3), 26–31 (2000)Google Scholar
  81. 81.
    V. Gekas, B. Hallstrom, G. Tragardh, Desalination, 53 (1–3), 95–127 (1985)Google Scholar
  82. 82.
    R. Molinari, R. Gagliardi, E. Drioli, Desalination, 100 (1–3), 125–137 (1996)Google Scholar
  83. 83.
    JL. Sardinas, Process Biochem 11 (4), 10 (1976)Google Scholar
  84. 84.
    M. J. Taylor, M. Cheryan, T. Richardson, NF. Olson, Biotechnol Bioeng 19, 683 (1977)Google Scholar
  85. 85.
    M. Cheryan, PJ. van Wyk, NF. Oslon, TF. Richardson; Biotechnol Bioeng 17, 585 (1975)Google Scholar
  86. 86.
    DD. Peebles, PD. Clary, CA. Kernpf, US Pat 3074797 (1963)Google Scholar
  87. 87.
    RH. Johnson, TC. Reavey, Public Health Report 80 (10), 919 (1965)Google Scholar
  88. 88.
    HE. Swaisgood, US Pat 4087328 (1978)Google Scholar
  89. 89.
    HE. Swaisgood, US Pat 4053644 (1977)Google Scholar
  90. 90.
    RS. Igoe, US Pat 4178390 (1979)Google Scholar
  91. 91.
    ICM. Dea, DJ. Finney, US Pat 4145454 (1979)Google Scholar
  92. 92.
    MW. Hickey, RD. Hill, BR. Smith, N.Z.J Dairy Sci Technol 15, 109 (1980)Google Scholar
  93. 93.
    S. Kimura, S-I. Nakao, Desalination 17, 267 (1975)Google Scholar
  94. 94.
    BA. Winfield, Water Research 13, 561 (1979)Google Scholar
  95. 95.
    G. Jonsson, S. Kristensen, Desalination 32, 327 (1980)Google Scholar
  96. 96.
    TJ. Kennedy, LE. Monge, BJ. McCoy, RL. Merson, A.I.Ch.E. Symp Ser 69 (132), 81 (1973)Google Scholar
  97. 97.
    J. Hiddink, R.de Boer, PFC. Nooy, J Dairy Sci 63, 204 (1980)Google Scholar
  98. 98.
    AJ. Morgan, E. Lowe, RL. Merson, EL. Durkee, Food Technol 19, 52 (1965)Google Scholar
  99. 99.
    R.de Boer, JN.de Wit, J. Hiddink, J Soc Dairy Technol 30, 112 (1977)Google Scholar
  100. 100.
    TH. Lim, WL. Dunkley, RL. Merson, J Dairy Sci 54 (3), 306 (1971)Google Scholar
  101. 101.
    DN. Lee, RL. Merson, J Food Sci 41, 778 (1976)Google Scholar
  102. 102.
    ME. Matthews, N.Z.J Dairy Sci Technol 14 (2), 86 (1979)Google Scholar
  103. 103.
    G. Peri, WL. Dunkley, J Food Sci 36, 25 (1971)Google Scholar
  104. 104.
    JM. Attebery, US Pat 3560219 (1971)Google Scholar
  105. 105.
    JF. Hayes, JA. Dunkerley, LL. Muller, AT. Griffin, Aust J Dairy Technol 29, 132 (1974)Google Scholar
  106. 106.
    BR. Smith, RD. MacBean, Aust J Dairy Technol 33 (2), 57 (1978)Google Scholar
  107. 107.
    ME. Matthews, RK. Doughty, JL. Short, N.Z.J Dairy Sci Technol 13, 216 (1978)Google Scholar
  108. 108.
    R. Greene, Chem Eng 85, 78 (1978)Google Scholar
  109. 109.
    AC. Olson, WL. Stanley, J Agric Food Chem 21, 440 (1973)Google Scholar
  110. 110.
    WL. Stanley, R. Palter, Biotechnol Bioeng 15, 597 (1973)Google Scholar
  111. 111.
    WH. Pitcher, JR. Ford, HH. Weetal, Methods Enzymol 44, 792 (1976)Google Scholar
  112. 112.
    HH. Weetall, CC. Detar, Biotechnol Bioeng 16 (8), 1095–1102 (1974)Google Scholar
  113. 113.
    M. Pastore, F. Morisi, Methods Enzymol 44, 822 (1976)Google Scholar
  114. 114.
    HH. Weetall, S. Yaverbaum, US Pat 3852496 (1974)Google Scholar
  115. 115.
    HH. Weetall, NB. Havewala, Biotechnol Bioeng Symp 3, 241 (1972)Google Scholar
  116. 116.
    S. Povolo, S. Casella, Macromolecular Symposia, 197, 1–9 (2003)Google Scholar
  117. 117.
    C. Schiraldi, V. Valli, A. Molinaro, M. Carteni, M. De Rosa, J of Industrial Microbiology & Biotechnology 33 (5), 384–390 (2006)Google Scholar
  118. 118.
    MI Torino, EM Hebert, F Mozzi, GF De Valdez, J Appl Microbiology 99 (5), 1123–1129 (2005)Google Scholar
  119. 119.
    MI. Torino, F. Mozzi, GF. De Valdez, Appl. Microbiology Biotechnology, 68 (2), 259–265 (2005)Google Scholar
  120. 120.
    P. Ruas-Madiedo, J. Hugenholtz, P. Zoon, International Dairy J., 12 (2/3), 163–171 (2002)Google Scholar
  121. 121.
    E. Walling, E. Gindreau, A. Lonvaud-Funel, Lait, 81 (1–2), 289–300 (2001)Google Scholar
  122. 122.
    DKY. Solaiman, RD. Ashby, TA. Foglia, WN. Marmer, Appl. Microbiology & Biotechnology, 71 (6), 783–789 (2006)Google Scholar
  123. 123.
    J. Cerning, FEMS Microbiology Rev’s 87 (1–2), 113–130 (1990)Google Scholar
  124. 124.
    SK. Singh, SU. Ahmed, A. Pandey, Process Biochem. 41 (5), 991–1000 (2006)Google Scholar
  125. 125.
    D. Toto, Recycling Today, 45 (1), 90–94 (2007)Google Scholar
  126. 126.
    E. Montoneri, P. Savarino, F. Adani, PL. Genevini, G. Ricca, F. Zanetti, S. Paoletti, Waste Management, 23 (6), 523–535 (2003)Google Scholar
  127. 127.
    AM. Fialho, LO. Martins, M-L. Donval, JH. Leitao, MJ. Ridout, AJ. Jay, VJ. Morris, I. Sa-Correia, Appl. Environmental Microbiology, 65 (6), 2485–2491 (1999)Google Scholar
  128. 128.
    T. Viswanathan, A. Toland, Carbohydrate Polymers, 15 (1), 41–49 (1991)Google Scholar
  129. 129.
    DM. Colin, Carbohydrate Polymers, 12 (1), 79–99 (1990)Google Scholar
  130. 130.
    NA Tarasova, AG Snezhko, EP Dontsova, LV Venediktova, Voprosy pitaniia (3), 72–74 (1978)Google Scholar
  131. 131.
    DJ. Cornelius, CM. Monroe, Technical Papers, Regional Technical Conference-Society of Plastics Engineers, 24 (1984)Google Scholar
  132. 132.
    KJ. Skinner, Chem Eng News 53, 22 (1975)Google Scholar
  133. 133.
    PB. Poulsen, L. Ziltan, Methods Enzymol 44, 809 (1977)Google Scholar
  134. 134.
    KL. Smiley, Biotechnol Bioeng 13, 309 (1971)Google Scholar
  135. 135.
    J. Kucera, Collect Czech Chem Commun 41, 2978 (1976)Google Scholar
  136. 136.
    DD. Lee, YY. Lee, PJ. Reilly, EV. Collins, GT. Tsao, Biotechnol. Bioeng. 18, 253 (1976)Google Scholar
  137. 137.
    SJ. Swanson, A. Emery, HC. Lim, AlChEJ. 24, 30 (1978)Google Scholar
  138. 138.
    C. Gruesbeck, HF. Rose, Ind Eng Chem Prod Res Develop 11, 74 (1972)Google Scholar
  139. 139.
    HH Weetall, WP Vann, WH Pitcher, DD Lee, YY Lee, GT Tsao, Met Enzymol 44, 776 (1976)Google Scholar
  140. 140.
    BJF. Hudson, Chem Ind 20, 1059 (1975)Google Scholar
  141. 141.
    JC. Davis, Chem Eng 81, 52 (1974)Google Scholar
  142. 142.
    I.Karube, S.Tanaka, T.Shirai, S.Suzuki, Biotechnol Bioeng 19, 1183–1191 (1977)Google Scholar
  143. 143.
    KN. Thompson, NE. Lloyd, RA. Johnson, US Pat 4011137 (1977), 4102745 (1978)Google Scholar
  144. 144.
    RE. Hebeda, DJ. Holik, HW. Leach, US Pat 4132595 (1979)Google Scholar
  145. 145.
    W. Colilla, NE. Lloyd, US Pat 4111750 (1978)Google Scholar
  146. 146.
    H. Maeda, GT. Tsao, LF. Chen, Biotechnol Bioeng 20, 383 (1978)Google Scholar
  147. 147.
    SP. O’Neill, P. Dunnill, MD. Lilly, Biotechnol Bioeng 13, 337 (1971)Google Scholar
  148. 148.
    RD. Mason, HH. Weetall, Biotechnol Bioeng 14, 637 (1972)Google Scholar
  149. 149.
    B. Metz, Beverage Industry 5 (7) (1978)Google Scholar
  150. 150.
    MPJ. Kierstan, Biotechnol Bioeng 20, 447 (1978)Google Scholar
  151. 151.
    GR. Serbia, PR. Aguirre, US Pat 3044904 (1962)Google Scholar
  152. 152.
    JL. Meers, Chem Br 115 (1976)Google Scholar
  153. 153.
    RA. Messing, US Pat 3868304 (1975)Google Scholar
  154. 154.
    DL. Eaton, RA. Messing, US Pat 3992329 (1976), 3982997 (1977)Google Scholar
  155. 155.
    KN. Thompson, RA. Johson, NE. Lloyd, US Pat 3788945 (1974), 3909354 (1975)Google Scholar
  156. 156.
    BJ. Schyder, Starke 26, 409 (1974)Google Scholar
  157. 157.
    GW. Strandberg, KL. Smiley, Biotechnol Bioeng 14,509 (1972)Google Scholar
  158. 158.
    WL. Stanley, GG. Watters, SH. Kelly, BG. Chan, JA. Garibaldi, JE. Schade, Biotechnol Bioeng 18 (3), 439–443 (1976)Google Scholar
  159. 159.
    G. Assalini, G. Brandoli, J Am Soc Sugar Beet Technol 11, 341 & 349 (1960)Google Scholar
  160. 160.
    K. Buchholz, B. Godelmann, Biotechnol.Bioeng. 23, 1201 (1978)Google Scholar
  161. 161.
    GJ. Haber, US Pat 4081567 (1978)Google Scholar
  162. 162.
    W. Diemaier, G. Maier, Untersuch.-Forsch. 119, 123 (1963)Google Scholar
  163. 163.
    NG. Marotta, H. Bell, GB. Charlick, US Pat 3573928 (1971)Google Scholar
  164. 164.
    M. Moll, G. Durand, H. Blachere, US Pat 4009286 (1977)Google Scholar
  165. 165.
    H. Beschke, H. Reinhardt, K. Achenbach, US Pat 3554759 (1971)Google Scholar
  166. 166.
    PR. Witt, RA. Sair, T. Richardson, NF. Olson, Brew. Dig., 45, 70 (1970)Google Scholar
  167. 167.
    J. Dehner, Weinberg Keller 12, 403 (1965).Google Scholar
  168. 168.
    GL. Marsh, J. Buhlert, S. Leonard, J. Food Process. PreserV. 2, 340–346 (1978)Google Scholar
  169. 169.
    RK. Apaiah, SA. Barringer, J. Food Process. Preser V. 25, 237–250 (2001)Google Scholar
  170. 170.
    FWC. Den Ouden, T. Van Vliet, J. Text. Stud. 33, 91–104 (2002)Google Scholar
  171. 171.
    GE. Anthon, JV. Diaz, DM. Barrett, J Agric Food Chem. 56, 7100–7105 (2008)Google Scholar
  172. 172.
    N. Beresovsky, IJ. Kopelman, S. Mizrahi, J. Food Process. PreserV. 19, 133–146 (1995)Google Scholar
  173. 173.
    MS. Kalamaki, MH. Harpster, JM. Palys, JM. Labavitch, DS. Reid, DA. Brummell, J. Agric. Food Chem. 51, 7456–7464 (2003)Google Scholar
  174. 174.
    T. Tanglertpaibul, MA. Rao, J. Food Sci. 52, 1642–1645 (1987)Google Scholar
  175. 175.
    GL. Marsh, SJ. Leonard, JE. Buhlert, J. Food Process. Preserv. 3, 195–212 (1979)Google Scholar
  176. 176.
    EA. Gordon, DM. Barrett, J. Text. Stud. 41, 1–17(2010)Google Scholar
  177. 177.
    BS. Luh, HN. Daoud, J. Food Sci. 36, 1039–1043 (1971)Google Scholar
  178. 178.
    F. Sherkat, BS. Luh, J. Agric. Food Chem. 24, 1155–1158 (1976)Google Scholar
  179. 179.
    GE. Anthon, DM. Barrett, Food Chem. 110, 239–247 (2008)Google Scholar
  180. 180.
    RR. Milczarek, KL. McCarthy, J. Text. Stud. 37, 640–654 (2006)Google Scholar
  181. 181.
    GL. Marsh, J. Buhlert, S. Leonard, J. Food Sci. 45, 703–706 (1980)Google Scholar
  182. 182.
    T. Tanglertpaibul, MA. Rao, J. Food Sci. 52, 318–321 (1987)Google Scholar
  183. 183.
    TD. Chou, JL. Kokini, J. Food Sci. 52, 1658–1664 (1987)Google Scholar
  184. 184.
    AJ. Basim, F. Banat, R. Jumah, S. Al-Asheh, S. Hammad, Int. J Food Prop. 7, 483–497 (2004)Google Scholar
  185. 185.
    E. Bayod, P Mansson, F Innings, B Bergenstahl, E Tornberg, Food Biophys 2, 146–157 (2007)Google Scholar
  186. 186.
    E. Bayod, EP. Willers, E. Tornberg, Lebensm.-Wiss. Technol. 41, 1289–1300 (2008)Google Scholar
  187. 187.
    PL. Caradec, PE. Nelson, J. Food Sci. 50, 1497–1498 (1985)Google Scholar
  188. 188.
    NG. Stoforos, DS. Reid, J. Food Sci. 57, 707–713 (1992)Google Scholar
  189. 189.
    N. Takada, PE. Nelson, J. Food Sci. 48, 1460–1462 (1983)Google Scholar
  190. 190.
    BR. Thakur, RK. Singh, PE. Nelson, J. Food Qual. 20, 495–500 (1997)Google Scholar
  191. 191.
    MC. Hurtado, LC. Greve, JM. Labavitch, J. Agric. Food Chem. 50, 273–278 (2002)Google Scholar
  192. 192.
    JV. Diaz, GE. Anthon, DM. Barrett, J. Agric. Food Chem. 55, 5131–5136 (2007)Google Scholar
  193. 193.
    S. Mizrahi, J. Food Process. Preser V. 21, 267–277 (1997)Google Scholar
  194. 194.
    WE Hunter, TP Sieder, US Pat 4151202 (1979)Google Scholar
  195. 195.
    SE. Murcott, DRF. Harleman, US Pat 5543056 (1996)Google Scholar
  196. 196.
    EL. Laurent, P. Laurent, US Pat 5,269,939 (1993).Google Scholar
  197. 197.
    QP. Peniston, EL. Johnson, US Pat 3533940 (1970), 3862122 (1975), 4018678 (1977), 4195175 (1980)Google Scholar
  198. 198.
    K. Dorfner, ed., “Ion Exchangers”, Walter de Gruyter, Berlin, 1991Google Scholar
  199. 199.
    CE. Harland, “Ion exchange: Theory and Practice”, The Royal Society of Chemistry, Cambridge, 1994Google Scholar
  200. 200.
    D. Muraviev, V. Gorshkov, A. Warshawsky, “Ion exchange”, M. Dekker, New York, 2000Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ahmed Akelah
    • 1
  1. 1.Faculty of Science Department of ChemistryTanta UniversityTantaEgypt

Personalised recommendations