Skip to main content

Coping Abiotic Stress with Plant Volatile Organic Chemicals (PVOCs): A Promising Approach

  • Chapter
  • First Online:

Abstract

Abiotic stresses including salinity are a major threat to agricultural productivity and hence global food security. Crop plants have adopted specialized strategies to reduce the impact of stress. The biogenic volatile organic compounds (VOCs) emitted from a wide range of plants help enable the buildup defense against biotic and abiotic stresses. Plant VOCs are comprised of different isoprene and monoterpene class of compounds in addition to alkanes, alkenes, carbonyls, alcohols, esters, ethers, and acids which have a demonstrated role against abiotic stress factors. Although it has been shown that several metabolic pathways may be involved in building up the defense, antioxidant route of alleviation is believed to be a common mechanism. The identification of the genes, transcriptomic profiling and proteins of the biosynthetic pathway has enabled ways to manipulate the synthesis of isoprenoid compounds. In recent years, there has been a growing interest in adopting VOC strategy to alleviate abiotic stresses in crop plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Jongsma MA, Kim TY, Ri MB, Giri AP, Verstappen FWA, Schwab W, Bouwmeester HJ (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem Rev 5:49–58

    Article  CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Umar S (2011) Oxidative stress: role of antioxidants in plants. Studium Press Pvt Ltd, New Delhi

    Google Scholar 

  • Basyunia M, Babab S, Inafukua M, Iwasakia H, Kinjoc K, Okua H (2009) Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. J Plant Physiol 166:1786–1800

    Article  Google Scholar 

  • Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler JP (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51:485–499

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Martin D, Oldham NJ, Gershenzon J (2000) Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys 375:261–269

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Phillips M, Ramachandiran V, Katoh S, Croteau R (1999) cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys 368:232–243

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Steele CL, Croteau R (1997) Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S,5S)-pinene synthase. J Biol Chem 272:21784–21792

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Suire C, d’ Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Schaller H, Khafif M, Schott G, Bendahmane A, Voinnet O (2012) Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in Arabidopsis. Proc Natl Acad Sci USA 109:1778–1783

    Article  PubMed  CAS  Google Scholar 

  • Brown JT, Hegarty PK, Charlwood BV (1987) The toxicity of monoterpenes to plant cell cultures. Plant Sci 48:195–201

    Article  CAS  Google Scholar 

  • Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Mugnozza GS, Karnosky DF, Loreto F, Sharkey TD (2007) Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ 30:654–661

    Article  PubMed  CAS  Google Scholar 

  • Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412–3442

    Article  PubMed  CAS  Google Scholar 

  • Cinege G, Louis S, Hänsch R, Schnitzler JP (2008) Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol Biol 69:593–604

    Article  PubMed  Google Scholar 

  • Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R (1993) 4S-limonene synthase from the oil glands of spearmint (Mentha spicata): cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem 268:23016–23024

    PubMed  CAS  Google Scholar 

  • Cseke L, Dudareva N, Pichersky E (1998) Structure and evolution of linalool synthase. Mol Biol Evol 15:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  PubMed  CAS  Google Scholar 

  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on diffusive conductances, Rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol 25:395–402

    Article  CAS  Google Scholar 

  • Delfine S, Alvino A, Villani MC, Loreto F (1999) Restrictions to CO2 conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of foral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:1–9

    Article  Google Scholar 

  • Fineschi S, Loreto F (2012) Leaf volatile isoprenoids: an important defensive armament in forest tree species. iForest 5:13–17

    Article  Google Scholar 

  • Fischbach RJ, Zimmer W, Schnitzler JP (2001) Isolation and functional analysis of a cDNA encoding a myrcene synthase from holm oak (Quercus ilex L.). Eur J Biochem 268:5633–5638

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17 1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Godard KA, White R, Bohlmann J (2008) Monoterpene induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849

    Article  PubMed  CAS  Google Scholar 

  • Guenther A, Kulmala M, Turnipseed A, Rinne J, Suni T, Reissell A (2011) Land ecosystem—atmosphere observational networks. iLeaps Newsletter 11:5–13

    Google Scholar 

  • Haudenschild CD, Croteau RB (1998) Molecular engineering of monoterpene production. Genet Eng 20:267–280

    CAS  Google Scholar 

  • Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9(11):529–533

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JK, Blande JD (2012) Molecular plant volatile communication. Adv Exp Med Biol 739:17–31

    Article  PubMed  CAS  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  PubMed  CAS  Google Scholar 

  • Jia JW, Crock J, Lu S, Croteau R, Chen XY (1999) (3R)-linalool synthase from Artemisia annua L. cDNA isolation, characterization, and wound induction. Arch Biochem Biophys 372:143–149

    Article  PubMed  CAS  Google Scholar 

  • Leivara P, Antolín-Llovera M, Ferrero S, Closa M, Arró M, Ferrer A, Boronat A, Campos N (2011) Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. Plant Cell 23:1494–511

    Article  Google Scholar 

  • Logan BA, Monson RK, Potosnak MJ (2000) Biochemistry and physiology of foliar isoprene production. Trends Plant Sci 5:477–481

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Delfine S (2000) Emission of Isoprene from Salt-Stressed Eucalyptus globulus leaves. Plant Physiol 123:1605–1610

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Fares S (2007) Is ozone flux Inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiol 143:1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stress and induced BVOCs. Trends Plant Sci 15:154–166

    Article  PubMed  CAS  Google Scholar 

  • Loyola J, Verdugo E, Gonzalez I, Casaretto JA, Ruiz-Lara S (2012) Plastidic isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress. Plant Biol 14:149–156

    PubMed  CAS  Google Scholar 

  • Lucker J, Bouwmeester HJ, Schwab W, Jan B, Linus H, van der Plas W, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-b-Dglucopyranoside. Plant J 27:315–324

    Article  PubMed  CAS  Google Scholar 

  • Maffei M, Camusso W, Sacco S (2001) Effect of Mentha x piperita essential oil and monoterpenes on cucumber root membrane potential. Phytochemistry 8:703–707

    Article  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau R (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98:8915–8920

    Article  PubMed  CAS  Google Scholar 

  • Mantri N, Patade V, Suprasanna P, Rebecca Ford, Edwin Pang (2012) Abiotic stress responses in plants—present and future. In: Parvaiz A, Prasad MNV (eds) Environmental adaptations to changing climate: metabolism, productivity and sustainability. Springer, pp 1–20

    Google Scholar 

  • Maruyama T, Ito M, Honda G (2001) Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos. Biol Pharm Bull 24:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Maruyama T, Saeki D, Ito M, Honda G (2002) Molecular cloning, functional expression and characterization of d-limonene synthase from Agastache rugoa. Biol Pharm Bull 25:661–665

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2000a) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:139–146

    Google Scholar 

  • Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    Article  PubMed  CAS  Google Scholar 

  • Neelakandan AK, Chamala S, Valliyodan B, Nes WD, Nguyen HT (2011) Metabolic engineering of soybean affords improved phytosterol seed traits. Plant Biotechnol J 10:12–19

    Article  PubMed  Google Scholar 

  • Ormeno E, Mévy JP, Vila B, Bousquet-Mélou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 67:276–284

    Article  PubMed  CAS  Google Scholar 

  • Phillips DR, Rasbery JM, Bartel B, Matsuda SPT (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol. 9:305–314

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Ohara K, Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579:2514–2518

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Saito T, Lämsä M, Oksman-Caldentey KM, Suzuki M, Ohyama K, Muranaka T, Ohara K, Yazaki K (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48:1254–1262

    Article  PubMed  CAS  Google Scholar 

  • Schaller H, Grausem B, Benveniste P, Chye ML, Tan CT, Song YH, Chua NH (1995) Expression of the Hevea brasiliensis (H.B.K.) Müll. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109:761–770

    PubMed  CAS  Google Scholar 

  • Schnitzler JP, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ (2005) Biochemical properties of isoprene synthase in poplar (Populus × canescens). Planta 222:777–786

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Šimpraga M, Verbeeck H, Demarcke M, Joó É, Okorska O, Amelynck C, Schoon N, Dewulf J, Van Langenhove H, Heinesch B, Aubinet M, Laffineur Q, Müller J-F, Steppe K (2011) Clear link between drought stress, photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L. Atmos Environ 45(30):5254–5259

    Article  Google Scholar 

  • Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK (2009) Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage. J Chem Ecol 35:154–62

    Article  PubMed  CAS  Google Scholar 

  • Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Schoot Uiterkamp A JM, Mark AE (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochim Biophys Acta 1768:198–206

    Article  PubMed  CAS  Google Scholar 

  • Spinelli F, Cellini A, Marchetti L, Mudigere NK, Piovene C (2011) Emission and function of volatile organic compounds in response to abiotic stress. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants-mechanisms and adaptations. InTech Publ. ISBN: 978-953-307-394-1

    Google Scholar 

  • Tingey DT, Evans R, Gumpertz M (1981) Effects of environmental conditions on isoprene emission from live oak. Planta 152:565–570

    Article  CAS  Google Scholar 

  • Turner G, Gershenzon J, Nielson EE, Froehlich JE, Croteau R (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol 428:419–438

    CAS  Google Scholar 

  • Ueda H, Kikuta Y, Matsuda K (2012) Plant communication—mediated by individual or blended VOCs? Plant Signal Behav 7(2):222–226

    Article  PubMed  CAS  Google Scholar 

  • Variyar PS, Chatterjee S, Sharma A (2010) Chemistry and biochemistry of odors. In: Logan EW, Jason MA (eds) The biology of odors: sources, olfaction and response. Nova Science Publisher, USA, pp 263–294

    Google Scholar 

  • Velikova VB (2008) Isoprene as a tool for plant protection against abiotic stresses. J Plant Interact 3:1–15

    Article  CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009a) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Nicholas Hewitt C (2009b) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    Article  CAS  Google Scholar 

  • Vickers CE, Possell M, Laothawornkitkul J, Ryan AC, Hewitt CN, Mullineaux PM (2011) Isoprene synthesis in plants: lessons from a transgenic tobacco model. Plant Cell Environ 34:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Nagegowda DA, Rawat R, Bouvier-Navé P, Guo DJ, Bach TJ, Chye ML (2011) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42

    Article  PubMed  CAS  Google Scholar 

  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28:898–905

    Article  CAS  Google Scholar 

  • Wiberley AE, Donohue AR, Westpha, MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32:939–947

    Article  PubMed  CAS  Google Scholar 

  • Wise ML, Savage TJ, Katahira E, Croteau R (1998) Monoterpene synthases from common sage (Salvia offcinalis): cDNA isolation, characterization, and functional expression of ( + )-sabinene synthase, 1,8-cineole synthase, and ( + )-bornyl diphosphate synthase. J Biol Chem 273:14891–14899

    Article  PubMed  CAS  Google Scholar 

  • Wu SQ, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447

    Article  PubMed  CAS  Google Scholar 

  • Zunino MP, Zygadlo JA (2004) Effects of monoterpenes on lipid oxidation in maize. Planta 219:303–309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suprasanna, P., Variyar, P. (2013). Coping Abiotic Stress with Plant Volatile Organic Chemicals (PVOCs): A Promising Approach. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_9

Download citation

Publish with us

Policies and ethics