Skip to main content

Handling Soybean (Glycine max L.) Under Stress

  • Chapter
  • First Online:
Book cover Crop Improvement

Abstract

Soybean is among the most important leguminous plants with the ability to establish symbiotic association with the N-fixing bacteria, Bradyrhizobium japonicum. With respect to the environmental and economical significance of N fixation, there has been extensive research work regarding the production of legumes including soybean under different conditions. Soils are usually subjected to some kind of stress including salinity, acidity and suboptimal root zone temperature. One of the most important processes, affecting the performance of soybean under stress is the inhibited exchange of the signal molecules, specifically genistein, between the host legume and B. japonicum during the initiation of symbiosis. Interestingly, inoculation of B. japonicum with the signal molecule genistein has partially or completely alleviated the stress. It is also of significance to determine the right combination of N-fertilization and rhizobium inoculums when planting leguminous including soybean. The use of breeding techniques may also be among the effective methods of improving soybean performance under stress. In this chapter some of the most important advances regarding the performance of soybean under different conditions including stress with respect to the molecular techniques are reviewed. Some future perspectives are also presented, the production of tolerant plants and microbes are among the most important ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Vuong TD, Harper JE (1998) Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Sci 38:72–77

    Google Scholar 

  • Aguilar JM, Ashby AM, Richards JM, Loake GJ, Watson MD, Shaw CH (1988) Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J Genetical Microbiol 134:2741–2746

    Google Scholar 

  • Akaya M, Takenaka C (2001) Effects of aluminum stress on photosynthesis of Quercus glauca Thumb. Plant Soil 237:137–146

    CAS  Google Scholar 

  • Appunu C, Dhar B (2006) Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. Afric J Biotechnol 5:842–845

    CAS  Google Scholar 

  • Asbjornsen H, Alvardo-Barrientos MS, Rebel K, Van Osch FP, Rietkerk M, Chen J, Gotsch S, Tobon C, Geissert DR, Gomez-Tagle A, Kellie V, Dawson TE (2011) Ecohydrological advances and applications in plant–water relations research: a review. J Plant Ecol 4:3–22

    Google Scholar 

  • Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, Sánchez M, Fernández J, Mulet J, Serrano R (2012) Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J 70:704–716

    PubMed  CAS  Google Scholar 

  • Boller T (1995) Chemoreception of microbial signals in plant cells. Ann Rev Plant Physiol Plant Mol Biol 46:189–214

    CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy A, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    PubMed  CAS  Google Scholar 

  • Chao WS, Gu YQ, Pautot V, Bray EA, Walling LL (1999) Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol 120:979–992

    PubMed  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie RT (2002) Expression profile matrix of Arabidopsis transcription factor genes suggest their putative functions in response to environmental stresses. Plant Cell 14:559–574

    PubMed  CAS  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    PubMed  CAS  Google Scholar 

  • Cleves AE, Mcgee TP, Bankaitis VA (1991) Phospholipid transfer proteins: a biological debut. Trends Cell Biol 1:30–34

    PubMed  CAS  Google Scholar 

  • Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Lahana A (2011) Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. J Nat Prod 25:469–495

    CAS  Google Scholar 

  • Cooper J, Wood M, Bjourson A (1985) Nodulation of Lotus pedunculatus in acid rooting solution by fast- and slow-growing rhizobia. Soil Biol Biochem 17:487–492

    Google Scholar 

  • De Graaff M-A, Van Groenigen K-J, Six J, Hungate B, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091

    Google Scholar 

  • Dey PM, Harborne JD (1997) Plant Biochemistry. Academic, San Diego, p 554

    Google Scholar 

  • Evans L, Lewin K, Vella F (1980) Effect of nutrient medium pH on symbiotic nitrogen fixation by Rhizobium leguminosarum and Pisum sativum. Plant Soil 56:71–80

    CAS  Google Scholar 

  • Evans L (1993) Crop evolution, adaptation, and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Fang Y, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116:53–68

    PubMed  CAS  Google Scholar 

  • Fangmeier A, De Temmerman L, Mortensen L, Kemp K, Burke J, Mitchell R, van Oijen M, Weigel HJ (1999) Effects of nutrients on grain quality in spring wheat crops grown under elevated CO2 concentrations and stress conditions in the European multiple-site experiment ‘ESPACE-wheat’. Europ J Agron 10:215–229

    Google Scholar 

  • Finzi AC, Austin AT, Cleland EC, Frey SD, Houlton BZ, Wallenstein MD (2011) Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ 9:61–67

    Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants—where next? Aust J Plant Physiol 22:875–884

    Google Scholar 

  • Franco AA, Munns DN (1982) Acidity and aluminum restraints on nodulation, nitrogen fixation, and growth of Phaseolus vulgaris in solution culture. Soil Sci Soc Am J 46:296–301

    CAS  Google Scholar 

  • Ferreira P, Bmfeti C, Soares B, Moreira F (2012) Efficient nitrogen-ixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium. World J Microbiol Biotechnol 28:1947–1959

    Google Scholar 

  • Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus Cajan (L.) MILLSP. Inter J Phytorem 14:62–74

    Google Scholar 

  • Graham PH, Draeger K, Ferrey ML, Conroy MJ, Hammer BE, Martinez-Romero E, Naarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207

    CAS  Google Scholar 

  • Hamilton TL, Lange RK, Boyd ES, Peters JW (2011) Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming. Environ Microbiol 13:2204–2215

    PubMed  CAS  Google Scholar 

  • Hassink J (1992) Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biol Fert Soils 14:126–134

    CAS  Google Scholar 

  • Herridge DF, Rose IA (1994) Heritability and repeatability of enhanced N2 fixation in early and late inbreeding generations of soybean. Crop Sci 34:360–367

    CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    CAS  Google Scholar 

  • Howieson JG, Robson AD, Bottomley PJ (1993) External phosphate and calcium concentrations, and pH, but not the products of rhizobial nodulation genes affect the attachment of Rhizobium meliloti to roots of annual medics. Soil Biol Biochem 25:567–573

    CAS  Google Scholar 

  • Hoyos M, Zhang SQ (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyper osmotic stress. Plant Physiol 122:1355–1363

    PubMed  CAS  Google Scholar 

  • Hungria M, Franchini J, Campo R, Graham P (2005) The importance of nitrogen fixation to soybean cropping in South America. In: Werner D, Newton W (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Netherlands, pp 25–42

    Google Scholar 

  • Jaglo-Ottosen K, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabdopisis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    PubMed  CAS  Google Scholar 

  • Joris H, Caires E, Bini A, Scharr D, Haliski A (2012) Effects of soil acidity and water stress on corn and soybean performance under a no-till system. Plant Soil 365:409–424

    Google Scholar 

  • Jin S, Chen C, Plant AL (2000) Regulation by ABA of osmotic-stress-induced changes in protein synthesis in tomato roots. Plant Cell Environ 23:51–60

    CAS  Google Scholar 

  • Ikeda S, Anda M, Inaba S, Eda S, Sato S, Sasaki K, Tabata S, Mitsui H, Sato T, Shinano T, Minamisawa K (2011) Autoregulation of nodulation interferes with impacts of nitrogen fertilization levels on the leaf-associated bacterial community in soybeans. Appl Environ Microbiol 77:1973–1980

    PubMed  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salttolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    CAS  Google Scholar 

  • Kapranov P, Routt SM, Bankaitis VA, Bruijn FJ, Szczyglowski K (2001) Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13:1369–1382

    PubMed  CAS  Google Scholar 

  • Keyser H, Munns D, Hohenberg J (1979) Acid tolerance of rhizobia in culture and in symbiosis with cowpea. Soil Sci Soc Am J 43:719–722

    CAS  Google Scholar 

  • Kohl DH, Schubert KR, Carter MB, Hagedorn CH, Shearer G (1988) Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. Proc Nat Acad Sci U S A 85:2036–2040

    CAS  Google Scholar 

  • Kohl DH, Lin JJ, Shearer G, Schubert KR (1990) Activities of the pentose phosphate pathway and enzymes of proline metabolism in legume root nodules. Plant Physiol 94:1258–1264

    PubMed  CAS  Google Scholar 

  • Kuzma M, Layzell DB (1994) Acclimation of soybean nodules to changes in temperature. Plant Physiol 106:263–270

    PubMed  CAS  Google Scholar 

  • Lauchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In: Staples RC, Toeniessen GH (eds) Salinity tolerance in plants. Strategies for crop improvement. Wiley, New York, pp 171–187

    Google Scholar 

  • Lee GJ, Boerma RH, Villagarcia RM, Zhu X, Carter TE Jr, Li Z, Gibbs MO (2004) A major OTL conditioning salt tolerance in S-100 and descendent cultivars. Theor Appl Genet 109:610–1619

    Google Scholar 

  • Lee J, Shannon G, Vuong T, Nguyen H (2009) Inheritance of Salt Tolerance in Wild Soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J Hered 100:798–801

    PubMed  CAS  Google Scholar 

  • Lewin B (2000) Genes VII. Oxford University Press, New York, p 990

    Google Scholar 

  • Li DY, Inoue H, Takahashi M, Kojima T, Shiraiwa M, Takahara H (2008) Molecular characterization of a novel salt-inducible gene for an OSBP (oxysterol binding protein)-homologue from soybean. Gene 407:12–20

    PubMed  CAS  Google Scholar 

  • Liao H, Wong FL, Phang TH, Cheung MY, Li WYF, Shao G, Yan X, Lam HM (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene 318:103–111

    PubMed  CAS  Google Scholar 

  • Lie TA (1969) The effect of low pH on different phases of nodule formation in pea plants. Plant Soil 31:391–406

    Google Scholar 

  • Liu B, Cyr RJ, Palevitza BA (1996) A Kinesin-like protein, KatAp, in the cells of Arabidopsis and other Plants. Plant Cell 8:119–132

    PubMed  CAS  Google Scholar 

  • Long S (2001) Genes and signals in the Rhizobium-legume symbiosis. Plant Physiol 125: 69–72

    PubMed  CAS  Google Scholar 

  • Long SP, Naidu SL (2002) Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In: Bell JNB, Treshow M (eds) Air Pollution and Plant Life. Wiley, UK, pp 69–88

    Google Scholar 

  • Lu K, Cao B, Feng X, He Y, Jiang D (2009) Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica 47:381–387

    CAS  Google Scholar 

  • Lynch DH, Smith DL (1993) Soybean (Glycine max (L.) Merr.) nodulation and N2 fixation as affected by period of exposure to a low root zone temperature. Physiologia Plant 88:212–220

    CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic, London

    Google Scholar 

  • Martins P, Jordão B, Yamanaka N, Farias J, Beneventi M, Binneck E, Fuganti R, Stolf R, Nepomuceno A (2008). Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae) cultivar MG/BR46 (Conquista) under two water deficit induction systems. Genet Mol Biol 31:512–521

    CAS  Google Scholar 

  • Martinez K, Kitko R, Mershon JP, Adcox H, Malek K, Berkmen M, Slonczewski J (2012) Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy. Appl Environ Microbiol 78:3706–3714

    PubMed  CAS  Google Scholar 

  • Meghvanshi MK, Prasad K, Mahna SK (2005) Identification of pH tolerant Bradyrhizobium japonicum strains and their symbiotic effectiveness in soybean (Glycine max (L.) Merr.) in low nutrient soil. Afric J Biotechnol 4:663

    Google Scholar 

  • Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R (2011) Nitric oxide in legume-rhizobium symbiosis. Plant Sci 181:573–581

    PubMed  CAS  Google Scholar 

  • Mengel K (1994) Symbiotic dinitrogen fixation—its dependence on plant nutrition and its ecophysiological impact. Z Pflanzenernähr Bodenkd 157:233–241

    CAS  Google Scholar 

  • Menegazzi P, Guzzo F, Baldan B, Mariani P, Treves S (1993) Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Commun 190:1130–1135

    PubMed  CAS  Google Scholar 

  • Miransari M, Balakrishnan P, Smith DL, Mackenzie AF, Bahrami HA, Malakouti MJ, Rejali F (2006) Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosaccahrides. Commun Soil Sci Plant Anal 37:1103–1110

    CAS  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean (Glycine max (L.) Merr.) nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    CAS  Google Scholar 

  • Miransari M, Smith DL (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    CAS  Google Scholar 

  • Miransari M, Smith D (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)––Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Europ J Soil Biol 45:146–152

    CAS  Google Scholar 

  • Miransari M (2010) Biological fertilization. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Microbiology book series––2010 Edition, Spain.

    Google Scholar 

  • Miransari M, Mackenzie AF (2010) Wheat (Triticum aestivum L.) grain N uptake as affected by soil total and mineral N, for the determination of optimum N fertilizer rates for wheat production. Commun Soil Sci Plant Anal 41:1644–1653

    CAS  Google Scholar 

  • Miransari M (2011) Soil microbes and plant fertilization. Review article. Appl Microbiol Biotechnol 92:875–885

    PubMed  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011a) Development of a soil N-test for fertilizer requirements for corn (Zea mays L.) production in Quebec. Commun Soil Sci Plant Anal 42:50–65

    CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011b) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr 34:762–777

    Google Scholar 

  • Miransari M (2012a) Role of phytohormone signaling during stress. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change, 1st edn. Springer, p 715, ISBN 978-1-4614-0814-7

    Google Scholar 

  • Miransari M (2012b) Microbial Products and Soil Stresses. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, p 333, ISBN 978-3-642-23464-4

    Google Scholar 

  • Munns DN (1968) Nodulation of Medicago sativa in solution culture. I. Acid sensitive steps. Plant Soil 28:129–146

    Google Scholar 

  • Munns DN (1970) Nodulation of Medicago sativa in solution culture. V. Calcium and pH requirements during infection. Plant Soil 32:90–102

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Pan B, Smith DL (1998a) Genistein addition to the rhizosphere of soybean (Glycine max L. Merr.) at the onset of nitrogen fixation increases nodulation. J Plant Nutr 21:1631–1639

    CAS  Google Scholar 

  • Pan B, Zhang F, Smith DL (1998b) Genistein addition to the soybean rooting medium increases nodulation. J Plant Nutr 21:1631–1639

    CAS  Google Scholar 

  • Pausch RC, Mulchi CL, Lee EH, Meisinger JJ (1996) Use of 13C and 15N isotopes to investigate O3 effects on C and N metabolism in soybeans. Part II. Nitrogen uptake, fixation, and partitioning. Agric Ecosys Environ 60:61–69

    CAS  Google Scholar 

  • Popescu A (1998) Contributions and limitations to symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.) in Romania. Plant Soil 204:117–125

    CAS  Google Scholar 

  • Purcell, L, Serraj R, Sinclair T, De A (2004) Soybean N2 fixation estimates, ureide concentration, and yield responses to drought. Crop Sci 44:484–492

    CAS  Google Scholar 

  • Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J (2005) Effects of water stress on respiration in soybean leaves. Plant Physiol 139:466–473

    PubMed  CAS  Google Scholar 

  • Rogers A, Gibon Y, Stitt M, Morgan PB, Bernacchi CJ, Ort DR, Long SP (2006) Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell Environ 29:1651–1658

    PubMed  CAS  Google Scholar 

  • Rokka A, Zhang L, Aro EM (2001) Rubisco activase: an enzyme with a temperature dependent dual function? Plant J 25:463–471

    PubMed  CAS  Google Scholar 

  • Sakthivelu G, Devi M, Giridhar P, Rajasekaran T, Ravishankar G, Nedev T, Kosturkova G (2008) Drought-induced alterations in growth, osmotic potential and in vitro regeneration of soybean cultivars. Gen Appl Plant Physiol Special Issue 34:103–112

    CAS  Google Scholar 

  • Salah IB, Slatni T, Gruber M, Messedi D, Gandour M, Benzarti M, Haouala R, Zribi K, Hamed KB, Perez-Alfocea F, Abdelly C (2011) Relationship between symbiotic nitrogen fixation, sucrose synthesis and anti-oxidant activities in source leaves of two Medicago ciliaris lines cultivated under salt stress. Environ Exp Bot 70:166–173

    Google Scholar 

  • Salon C, Munier-Jolain NG, Duc G, Voisin AS, Grandgirard D, Larmure D, Emery RJN, Ney B (2001) Grain legume seed filling in relation to nitrogen acquisition: a review and prospects with particular reference to pea. Agronomie 21:539–552

    Google Scholar 

  • Salvagiotti F, Cassman K, Specht J, Walters D, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res 108:1–13

    Google Scholar 

  • Sanchez PA, Salinas JG (1981) Low-input technology for managing Oxisols and Ultisols in tropical America. Adv Agron 34:279–406

    CAS  Google Scholar 

  • Schmidt P, Broughton W, Werner D (1994) Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR34 induce flavonoid accumulation in soybean root exudate. Mol Plant-Microb Interact 7:384–390

    CAS  Google Scholar 

  • Schubert S, Schubert E, Mengel K (1990) Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124:239–244

    CAS  Google Scholar 

  • Shamsi IH, Wei K, Zhang GP, Jilani GH, Hassan MJ (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biologia Plant 52: 165–169

    CAS  Google Scholar 

  • Sharma P, Yadav A (2012) Symbiotic characterization of mutants defective in proline dehydrogenase in Rhizobium sp. Cajanus under drought stress condition. Europ J Exp Biol 2:206–216

    CAS  Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour A, Rastgar Jazii F, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:1–15

    Google Scholar 

  • Soares Novo MC, Tanaka RT, Mascarenhas HAA, Bortoletto N, Gallo PB, Alves Pereira JCVN, Teixeira Vargas AA (1999) Nitrogênio e potassio na fixação simbiotica de N2 por soja cultivada no inverno. Scientia Agricola 56:143–156

    Google Scholar 

  • Sorensen P, Lett S, Michelsen (2012) Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecol 213:695–706

    Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential—a genetic and physiological perspective. Crop Sci 39:1560–1570

    Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    CAS  Google Scholar 

  • Streeter J (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. CRC Crit Rev Plant Sci 7:1–23

    CAS  Google Scholar 

  • Subramanian S, Hu Z, Lu G, Odelland JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639

    PubMed  CAS  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14:565–575

    Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399:686–688

    CAS  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1995) Phenology, growth, and yield of field-grown soybean and bush bean as a function of varying modes of N nutrition. Soil Biol Biochem 27:575–583

    CAS  Google Scholar 

  • Ti C, Pan J, Xia Y, Yan X (2012) A nitrogen budget of mainland China with spatial and temporal variation. Biocheochem 108:381–394

    Google Scholar 

  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JWC (2011) Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17

    Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res 65:211–228

    Google Scholar 

  • Valliyodan B, Nguyen H (2008) Genomics of Abiotic Stress in Soybean. In: Stacey G (ed) Genetics and genomics of soybean. Springer Science + Business Media, New York

    Google Scholar 

  • Van Gestel M, Merckx R, Vlassak K (1996) Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol Biochem 28:503–510

    Google Scholar 

  • Van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:165–181

    Google Scholar 

  • Vassileva V, Milanov G, Ignatov G, Nikolov B (1997) Effect of nitrogen fixation of common bean grown at various calcium and nitrate levels. J Plant Nutr 20:279–294

    CAS  Google Scholar 

  • Velagaleti RR, Marsh S, Kramer D, Fleischman D, Corbin J (1990) Genotypic differences and nitrogen fixation among soybean (Glycine max L.) cultivars grown under salt-stress. Tropic Agric 67:169–177

    CAS  Google Scholar 

  • Velitcukova M, Fedina I (1998) Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica 35:89–97

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    PubMed  CAS  Google Scholar 

  • Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K, Cloots L, Engelen K, Marchal K, Michiels J (2011) Stress response regulators identified through genome-wide transcriptome analysis of the (p)ppGpp-dependent response in Rhizobium etli. Genome Biol 12:R17

    Google Scholar 

  • Verma D (1992) Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4:373–382

    PubMed  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA and SA in Iris hexagona. J Chem Ecol 27:327–342

    PubMed  CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    PubMed  Google Scholar 

  • Wang N, Khan W, Smith DL (2012) Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PLoS ONE 7:e31571

    Google Scholar 

  • Wei H, Layzell DB (2006) Adenylate-coupled ion movement. A mechanism for the control of nodule permeability to O2 diffusion1[OA]. Plant Physiol 141:280–287

    PubMed  CAS  Google Scholar 

  • Whelan AM, Alexander M (1986) Effects of low pH and high Al, Mn and Fe levels on the survival of Rhizobium trifolii and nodulation of subterranean clover. Plant soil 92:363–371

    CAS  Google Scholar 

  • Wilcox JR (2004) World distribution and trade of soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, Production and Uses, ASA, CSSA, ASSA (2004), pp 1–13

    Google Scholar 

  • Wolf O, Jeschke WD, Hartung W (1990) Long-distance transport of abscisic acid in NaCl-treated intact plants of Lupinus albus. J Exp Bot 41:593–600

    CAS  Google Scholar 

  • Wolff AB, Singleton PW, Sidirelli M, Bohlool BB (1993) Influence of acid soil on nodulation and inter strain competitiveness in relation to tannin concentrations in seeds and roots of Phaseolus vulgaris. Soil Biol Biochem 25:715–721

    Google Scholar 

  • Wood M, Cooper JE, Holding AJ (1984) Soil acidity factors and nodulation of Trifolium repens. Plant Soil 78:367–379

    CAS  Google Scholar 

  • Yamaguchi M, Valliyodan B, Zhang J, Lenoble M, Yu O, Rogers E, Nguyen H, Sharp R (2010) Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ 33:223–243

    PubMed  CAS  Google Scholar 

  • Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol 99:415–421

    PubMed  CAS  Google Scholar 

  • Yang L, Ji W, Gao P, Li Y, Cai H, et al (2012) GsAPK, an ABA-Activated and Calcium-Independent SnRK2-Type Kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS ONE 7:e33838

    Google Scholar 

  • Yasmin K, Cadisch G, Baggs EM (2006) Comparing 15N labelling techniques for enriching above- and below ground components of the plant–soil system. Soil Biol Biochem 38:397–400

    CAS  Google Scholar 

  • Yoon Y, Hamayun M, Lee S, Lee I (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Google Scholar 

  • Zhang F, Smith DL (1995) Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean (Glycine max. (L.) Merr.) at suboptimal root zone temperatures. Plant Physiol 108:961–968

    PubMed  CAS  Google Scholar 

  • Zhang F, Smith DL (2002) Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv Agron 76:125–161

    CAS  Google Scholar 

  • Zhang H, Daoust F, Charles TC, Driscoll BT, Prithiviraj B, Smith DL (2002) Bradyrhizobium japonicum mutants allowing improved nodulation and nitrogen fixation of field grown soybean in a short season area. J Agric Sci 138:293–300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miransari, M. (2013). Handling Soybean (Glycine max L.) Under Stress. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_15

Download citation

Publish with us

Policies and ethics