Skip to main content

In vitro Production of Secondary Metabolites Using Elicitor in Catharanthus roseus: A Case Study

  • Chapter
  • First Online:
Crop Improvement

Abstract

Secondary metabolites are mainly derived from plants and are used by humans from time immemorial. A plant cell, tissue, and organ culture has an inherent capacity to manufacture valuable chemical compounds as the parent plant does in nature. In vitro plant materials are one of the good sources for the production of secondary metabolite and elicitation can be used as one of the important tool in order to improve the synthesis of these compounds. In a variety of plant cell cultures, elicitors have increased production of terpenoid indole alkaloids, isoflavonoid phytoalexins, serquiterpenoid phytoalexin, coumarins etc. Although elicitation has been carried out in large number of medicinal plants, we extensively studied it in Catharanthus roseus, because it is an important source of anticancer compounds Vinblastine (VLB) and Vincristine (VCR). The use of elicitor is also important in order to meet the market demands, for reducing production costs and for in-depth investigation of biochemical and metabolic pathways. This information helps us in manipulation of biosynthetic pathways which can be used as a powerful tool to make natural product-like compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Mawla, AMA (2012) Influence of certain abiotic elicitors on production of anthraquinones in cell cultures of Rubia tinctorum. Spatula DD 2:89–94

    Article  Google Scholar 

  • Ahmed SA, Baig MMV (2012) Elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. www.apjtb.com/press/2012/B691.doc

  • Aijaz A, Jain S, Hariharan AG (2011) Effect of elicitation on the production of phyto-constituents through plant tissue culture technique—a review. Int. J Drug Disc Herb Res 1:84–90

    Google Scholar 

  • Almagro L, López Perez AJ, Pedreño MA (2011). New method to enhance ajmalicine production in Catharanthus roseus cell cultures based on the use of cyclodextrins. Biotech Lett 33(2):381–385

    Article  CAS  Google Scholar 

  • Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotech. Equip 20:72–83

    CAS  Google Scholar 

  • Asano M, Harada K, Yoshikawa T, Bamba T, Hirata K (2010) Synthesis of anti-tumor dimeric indole alkaloids in Catharanthus roseus was promoted by irradiation with near-ultraviolet light at low temperature. Biosci Biotechnol Biochem 74:386–389

    Article  PubMed  CAS  Google Scholar 

  • Aslam J, Mujib A, Sharma MP (2011) Influence of freezing and non-freezing temperature on somatic embryogenesis and vinblastine production in Catharanthus roseus (L.) G. Don. Acta Physiol Plant 33(2):473–480

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. doi:10.1093/jxb/ers100

    Google Scholar 

  • Balandrin MF, Klocke JA (1988) Medicinal, aromatic and industrial materials from plants. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Vol. 40. Springer-Veralg, Berlin, pp 1–35

    Google Scholar 

  • Barz W, Daniel S, Hinderer, W, Jaques U, Kessmann H, Koster J, Tiemann K (1988) Elicitation and metabolism of phytoalexins in plant cell cultures. In: Pais M, Mavituna F, Novais J (eds) “Plant cell biotechnology”. “Biotechnology”. NATO ASI series. Springer-Verlag, Berlin, pp 211–230

    Google Scholar 

  • Benhamou N (1996) Elicitor induced plant defence pathways. Trends Plant Sci 1:233–240

    Google Scholar 

  • Bhambhani S, Karwasara VS, Dixit VK, Banerjee S (2012) Enhanced production of vasicine in Adhatoda vasica (L.) nees. cell culture by elicitation. Acta Physiol Plant 34:1571–1578

    Article  Google Scholar 

  • Binder BY, Peebles CA, Shanks JV, San KY (2009) The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol Prog 25(3):861–866

    Article  PubMed  CAS  Google Scholar 

  • Bol JF, Linthorst HJM, Cornelissen BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annual Rev Phytopath 28:113–138

    Article  CAS  Google Scholar 

  • Bowles DJ (1990) Defense-related proteins in higher plants. Annual Rev Biochem 59:873–907

    Article  CAS  Google Scholar 

  • Braun DM, Walker JC (1996) Plant transmembrane receptors: new pieces in the signalling puzzle. Trends Biochem Sci 21:70–73

    PubMed  CAS  Google Scholar 

  • Bruneton J (1993) Pharmacognosy phytochemistry medicinal plants, 2nd edn. Lavoisier Publishers, Paris

    Google Scholar 

  • Bux H, Ashraf M, Rasheed A, Poudyal DS, Kazi AG, Afzaal M (2012) Molecular basis of disease resistance in cereal crops: an overview. In: Ashraf M, Öztürk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Netherlands, pp 477–489

    Google Scholar 

  • Chong TM, Abdullah MA, Lai QM, Nor AFM, Lajis NH (2005) Effective elicitation factors in Morinda elliptica cell suspension culture. Process in Biochem 40:3397–3405

    Article  CAS  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss and Org Cult 106:279–288

    Article  CAS  Google Scholar 

  • Davis D, Merida J, Legendre L, Low PS, Heinstein P (1993) Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells. Phytochemistry 32:607–611

    Article  CAS  Google Scholar 

  • Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondani A, Polverari A, Lamb C (2002) Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiol Biochem 40:605–610

    Article  CAS  Google Scholar 

  • Devergne J-C, Bonnet P, Panabiers F, Blein JP, Ricci P (1992) Migration of the fungal protein cryptogein within tobacco plants. Plant Physiol 99:843–847

    Article  PubMed  CAS  Google Scholar 

  • Djonović S, Walter A, Vargas, Michael V, Kolomiets, Michelle, Horndeski, Wiest A, Charles MK (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in Maize. Plant Physiol 145:875–889

    Article  PubMed  CAS  Google Scholar 

  • Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36

    Article  CAS  Google Scholar 

  • Eilert U (1987) Elicitation: methodology and aspects of application. In: Vasil IK, Constabel F (eds) Cell culture and somatic cell genetics of plants, Vol 4. Academic Press, San Diego, pp 153–196

    Google Scholar 

  • El-Samra, I.A. Amer MA, Abd-El-Hamid MR, Kabeil SS, El-Alwany AM (2011) Chemical reaction in tomato plants in response to a biotic elicitors treatments. Nature and Science 9:169–185

    Google Scholar 

  • El-Sayed M, Verpoorte R (2002) Effect of phytohormones on growth and alkaloid accumulation by a Catharanthus roseus cell suspension cultures fed with alkaloid precursors tryptamine and loganin. Plant Cell Tiss Org Cult 68:265–270

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2004) Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators. Plant Growth Regul 44:53–58

    Article  CAS  Google Scholar 

  • Evans WC (1996) Trease and evans, pharmacognosy, 14th ed. Harcourt Brace and Company, Asia Pvt Ltd

    Google Scholar 

  • Gao F-k, Yong Y-h, Dai C-c (2011) Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. J Med Plants Res 5(18):4418–4425

    Google Scholar 

  • Gao F-K, Ren C-G, Dai C-C (2012) Signaling effects of nitric oxide, salicylic acid, and reactive oxygen species on isoeuphpekinensin accumulation in Euphorbia pekinensis suspension cells induced by an endophytic fungal elicitor. J Plant Growth Regul. doi: 10.1007/s00344-012-9258-8

    Google Scholar 

  • Gelli A, Higgins VJ, Blumwald E (1997) Activation of plasma membrane Ca2+ membrane channels by race specific fungal elicitors. Plant Physiol 113:269–279

    PubMed  CAS  Google Scholar 

  • Ghorpade R P, Chopra A, Nikam TD (2011) Influence of biotic and abiotic elicitors on four major isomers of boswellic acid in callus culture of Boswellia serrata Roxb. Plant Omics. 4:169–176

    CAS  Google Scholar 

  • Godoy-Hernandez GC, Vazquez-Flota FA, Loyola-Vargas VM (2000) The exposure to trans-cinnamic acid of osmotically stressed Catharanthus roseus cells cultured in a 14–1 bioreactor increases alkaloid accumulation. Biotechnol Lett 22:921–925

    Article  CAS  Google Scholar 

  • Guo X-R, Yang L, Yu J-H, Tang Z-H, Zu Y-G (2007) Alkaloid variations in C. roseus seedlings treated by different temperatures in short term and long term. J Forestry Res 18:313–315

    Article  CAS  Google Scholar 

  • Guo X-R, Zu Y-G, Tang Z-H (2012) Physiological responses of Catharanthus roseus to different nitrogen forms. Acta Physiol Planta 34(2):589–598

    Article  CAS  Google Scholar 

  • Guoyin Kai G, Liao P, Xu H, Wang J, Zhou C, Zhou W, Qi Y, Xiao J, Wang Y, Zhang L (2012) Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures. Acta Physiol Plant 34(4):1421–1433

    Article  Google Scholar 

  • Gururaj HB, Giridhar P, Ravishankar GA (2012) Laminarin as a potential non-conventional elicitor for enhancement of capsaicinoid metabolites. Asian J Plant Sci Res 2:490–495

    CAS  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annual Rev Phytopath 34:387–412

    Article  CAS  Google Scholar 

  • Hamerski D, Beier RC, Kneusel RE, Matern U, Himmelspacht K (1990) Accumulation of coumarins in elicitor-treated cell suspension cultures of Ammi majus. Phytochemistry 29:1137–1142

    Article  CAS  Google Scholar 

  • Hanania U, Avni A (1997) High affinity binding site for the ethylene inducing xylanase elicitor on Nicotiana tabacum membrane. Plant J 12:113–120

    Article  CAS  Google Scholar 

  • Hisiger S, Jolicoeur M (2007) Analysis of Catharanthus roseus alkaloids by HPLC. Phytochem Rev 6:207–234

    Article  CAS  Google Scholar 

  • Huang X, Kiefer E, Von Rad, U, Ernst D, Foissner I, Durner J (2002) Nitric oxide burst and nitric oxide-dependent gene induction in plants. Plant Physiol Biochem 40:625–631

    Article  CAS  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  PubMed  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Letters 508:463–469

    Article  PubMed  CAS  Google Scholar 

  • Jha, S, Sahu, NP, Mahato, SB (1988) Production of the alkaloids emetine and cephaeline in callus cultures of Cephaelis ipecacuanha. Planta Medica 54:504–506

    Article  PubMed  CAS  Google Scholar 

  • Kalidass C, Mohan VR, Arjunan Daniel A (2010) Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus L. (Apocynaceae). Trop Subtrop Agroeco 12:283–288

    Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Medi Plants Res 3:1222–1239

    CAS  Google Scholar 

  • Katz V, Fuchs A, Conrath U (2002) Pretreatment with salicylic acid primes parsley cells for enhanced ion transport following elicitation. FEBS Letters 520:53–57

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W, Domard A (1989) The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callus formation in suspension cells and protoplasts of Catharanthus roseus. Planta 178:385–392

    Article  CAS  Google Scholar 

  • Kobayashi I, Murdoch LJ, Kunoch H, Hardham AR (1995) Cell biology of early events in the plant resistance response to infection by pathogenic fungi. Canadian J Botany 73:418–425

    Article  Google Scholar 

  • Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. European J Plant Path 107:69–78

    Article  Google Scholar 

  • Lebrun-Garcia A, Bourque S, Binet MN, Ouaked F, Wendehenne D, Chiltz A, Schaffner A, Pugin A (1999) Involvement of plasma membrane proteins in plant defense responses. Analysis of the cryptogein signal transduction in tobacco. Biochimie 81:663–668

    Article  PubMed  CAS  Google Scholar 

  • Lee CWT, Shuler ML (1991) Different flask closures alter gas phase composition and ajmalicine production in Catharanthus roseus cell suspensions. Biotech Techn 5:173–178

    Article  CAS  Google Scholar 

  • Lee-Parsons CWT (2007) Gas composition strategies for the successful scale-up of Catharanthus roseus cell cultures for the production of Ajmalicine. Phytochem Rev 6:419–433

    Article  CAS  Google Scholar 

  • Lee-Parsons CWT, Ertürk S (2005) Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca2+level. Plant Cell Rep 24:677–682

    Article  PubMed  CAS  Google Scholar 

  • Legendre L, Heinstein PF, Low PS (1992) Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267:20140–20147

    PubMed  CAS  Google Scholar 

  • Lovkova MY, Buzuk GN, Sokolova SM, Kliment’eva NI (2001) Chemical features of medicinal plants (Review). App Biochem Micro 37:229–237

    Article  CAS  Google Scholar 

  • Lovkova M Y, Buzuk GN, Sokolova SM, Buzuk LN (2005) Role of elements and physiologically active compounds in the regulation of synthesis and accumulation of indole alkaloids in Catharanthus roseus L. App Biochem Micro 41:299–305

    Article  CAS  Google Scholar 

  • Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Planta 96:533–542

    Article  CAS  Google Scholar 

  • Luan S (1998) Protein phosphatases and signaling cascades in higher plants. Trends Plant Sci 3:271–275

    Article  Google Scholar 

  • Maffei ME, Arimura G-I, Mithöfer A (2012) Natural elicitors, effectors and modulators of plant responses. Nat Prod Rep doi:10.1039/C2NP20053H

    Google Scholar 

  • Mahady GB, Liu C, Beecher WW (1998) Involvement of protein kinase and G proteins in the signal transduction of benzophenanthridine alkaloid biosynthesis. Phytochemistry 48:93–102

    Article  PubMed  CAS  Google Scholar 

  • Mathieu Y, Kurkdjian A, Xia H, Guern J, Koller, A, Spiro MD, Spiro M, O’Neill M, Albersheim P, Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1:333–343

    Google Scholar 

  • Memelnik J, Verpoorte R, Kijne JW (2001) ORC Anization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  Google Scholar 

  • Miao ZQ, Wei ZJ, Yuan, YJ (2000) Sheng Wu Gong Cheng Xue Bao Chinese. J Biotech 16:509–513

    CAS  Google Scholar 

  • Mihai A, Cristina S, Helepciuc F, Brezeanu A, Stoian G (2011) Biotic and abiotic elicitors induce biosynthesis and accumulation of resveratrol with antitumoral activity in the long—term Vitis vinifera L. callus cultures. Romanian Biotech Lett 16:6683–6689

    CAS  Google Scholar 

  • Mithöfer A, Fliegmann J, Daxberger A, Ebel C, Neuhaus-Url G, Bhagwat AA, Keister DL, Ebel J (2001) Induction of H2O2 synthesis by β-glucan elicitors in soybean is independent of cytosolic calcium transients. FEBS Letters 508:191–195

    Article  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van BF (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mohd Idrees M, Naeem M, Aftab T, Khan MMA, Moinuddin (2011) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol Plant 33(3):987–999

    Google Scholar 

  • Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Path 4:73–79

    Article  CAS  Google Scholar 

  • Moreno PRH, Poulsen C, Van Der Heijden R, Verpoorte R (1996) Effects of elicitation on different secondary metabolic pathways in Catharanthus roseus cell suspension cultures. Enzyme Microb Technol 18:99–107

    Article  CAS  Google Scholar 

  • Moreno PRH, Van Der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. 2. Updating from1988 to 1993. Plant Cell Tiss Org Cult 42:1–25

    Article  Google Scholar 

  • Mulabagal V, Tsay H-S (2004) Plant cell cultures—an alternative and efficient source for the production of biologically important secondary metabolites. Inter J App Sci Eng 2(1):29–48

    Google Scholar 

  • Muranaka T, Ohakawa H, Yamada Y (1992) Scopalamine release into media by Duboisia leichhardtti hairy root clones. Appl Microbial Biotechnol 37:554–559

    Article  CAS  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Verpoorte R (2009) Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics. Biotechnol Lett 31:1967–1974

    Article  PubMed  CAS  Google Scholar 

  • Namdeo A, Patil S, Fulzele DP (2000) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18:159–162

    Article  CAS  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for the production of secondary metabolites: A review. Pharmacog Rev 1:69–79

    CAS  Google Scholar 

  • Nennstiel, D, Scheel D, Nürnberger T (1998) Characterization and partial purification of an oligopeptide elicitor receptor from parsley (Petroselinum crispum). FEBS Lett 431:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nigra HM, Caso OH, Guilietti AM (1987) Production of solasodine by calli form different parts of Solanum eleaginifolium Cav. Plants. Plant Cell Rep 6:135–137

    CAS  Google Scholar 

  • Nishi A (1994) Effect of elicitors on the production of secondary metabolites. In: Ryu DDY, Furasaki S (eds) Advances in plant biotechnology. Amsterdam: Elsevier Science, pp 135–151

    Google Scholar 

  • Nürnberger T (1999) Signal perception in plant pathogen defence. Cell Mol Life Sci 55:167–182

    Article  Google Scholar 

  • Pan Q, Chen Y, Wang Q, Yuan F, Xing S, Tian Y, Zhao J, Sun X, Tang K (2010) Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regul 60:133–141

    Article  CAS  Google Scholar 

  • Pande D, Malik S, Bora M, Srivastava PS (2002) Rapid protocol for in-vitro micropropagation of Lepidium sativum Linn and enhancement in the yield of lepidine. In-vitro Cell Dev Bio Plant 38:451–456

    Article  Google Scholar 

  • Pedras MSC, Nycholat CM, Montaut S, Xu Y, Khan AQ (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59:611–625

    Article  PubMed  CAS  Google Scholar 

  • Piel J, Atzorn R, Gabler R, Kuhnemann F, Boland W (1997) Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade. FEBS Letters 416:143–148

    Article  PubMed  CAS  Google Scholar 

  • Pitta–Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26:252–258

    Article  PubMed  Google Scholar 

  • Poutrain P, Mazars C, Thiersault M, Rideau M, Pichon O (2009) Two distinct intracellular Ca2+-release components act in opposite ways in the regulation of the auxin-dependent MIA biosynthesis in Catharanthus roseus cells. J Exp Bot 60:1387–1398

    Article  PubMed  CAS  Google Scholar 

  • Pradel H, Dumkelehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. secondary metabolism and plant regeneration. J Plant Physiology 151:209–215

    Article  CAS  Google Scholar 

  • Prakash G, Srivastava AK (2008) Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell cultivation. Biochem Engi J 40:218–226

    Article  CAS  Google Scholar 

  • Preisig CL, Moreau RA (1994) Effects of potential signal transduction antagonists on phytoalexin accumulation in tobacco. Phytochemistry 36:857–863

    Article  CAS  Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotech Applied Biochem 37:91–102

    Article  CAS  Google Scholar 

  • Ramani S, Chelliah J (2008) Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 3:9–14

    Article  PubMed  CAS  Google Scholar 

  • Ramani S, Jayabaskaran C (2007) UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7:61–78

    Google Scholar 

  • Ramawat KG, Merillon JM (2007) Biotechnology; Secondary metabolites; Plants and microbes, 2nd edn. Science Publishers, Enfield

    Google Scholar 

  • Rao RS, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotech Advan 20:101–153

    Article  CAS  Google Scholar 

  • Ravishankar GA, Grewal S (1991) Development of media for growth of Dioscorea deltoidea cells and in-vitro diosgenin production: Influence of media constituents and nutrient stress. Biotech Lett 13:125–130

    Article  CAS  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root culture. Biotechnol Prog 14:442–449

    Article  PubMed  CAS  Google Scholar 

  • Robins RI (1994) Secondary products from cultured cells and organs: Molecular and cellular approaches. In: Dixon RA, Gonzales, RA (eds) Plant Cell Culture. IRI Press, NY

    Google Scholar 

  • Roemis T (2001) Protein kinases in the plant defence response. Curr Opi Plant Biol 4:407–414

    Article  Google Scholar 

  • Roos W, Evers S, Hieke M, Tschöpe M, Schumann B (1998) Shifts of intracellular pH distribution as a part of signal mechanism leading to the elicitation of benzophenanthridine alkaloids. Plant Physiol 118:349–364

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-May E, Galaz-Ávalos RM, Loyola-Vargas VM (2009) Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with Methyl Jasmonate. Mol Biotechnol 41:278–285

    Article  PubMed  CAS  Google Scholar 

  • Schmeller T, Wink M (1998) Utilization of alkaloids in modern medicine. In: Roberts MF, Wink M (eds) Alkaloids. Biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 435–459

    Google Scholar 

  • Scragg AH (1992) Bioreactors for mass cultivation of plant cells. In: Fowler MW, Warren GS (eds) Plant biotechnology. Peragmon Press, England, pp 45–62

    Google Scholar 

  • Senoussi MM, Bassa Nora B, Joêl C (2009) Impact of hypoxia on the growth and alkaloid accumulation in Catharanthus roseus cell suspension. Acta Physiol Plant 31:359–362

    Article  CAS  Google Scholar 

  • Shanks JV, Bhadra R, Morgan J, Rijhwani S, Vani S (1998) Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering. Biotechnol Bioeng 58:333–338

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Sharma A, Kumar A, Basu SK (2011) Enhancement of secondary metabo;ites in cultured plant cells through stress stimulus. American J Plant Physiol 6:50–71

    Article  CAS  Google Scholar 

  • Shirsau K, Nakajima H, Krishnamachari RV, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Google Scholar 

  • Shukla AK, Shasany AK, Verma RK, Gupta MM, Mathur AK, Khanuja SP (2010) Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Protoplasma 242:35–47

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui ZH, Mujib A, Ahmad MM, Ali A (2010) Fungal elicitors: A potent approach for enhancing secondary metabolites in cultured cells. In: Gupta VK, Tuohy M, Gaur RK (eds) Fungal biochemistry and biotechnology. Lap Lambert Academic Publishing AG & CO. KG, Germany, pp 88–104

    Google Scholar 

  • Singh SN, Vats P, Suri S et al. (2001) Effect of an antidiabetic extract of Catharanthus roseus on enzymatic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 76:269–277

    Article  PubMed  CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Advances in Biochem Engi Biotech 111:187–228

    CAS  Google Scholar 

  • Smith DA, Banks SW (1986) Biosynthesis, elicitation and biological activity of isoflavonoid phytoalexins. Phytochemistry 25:979–995

    Article  CAS  Google Scholar 

  • Srividya N, Devi BPS (1998) Azadirachtin and nimbin content in in-vitrocultured shoots and roots of Azadirachta indica A. Juss. Indian J of Plant Physiol 3:129–134

    CAS  Google Scholar 

  • Stafford A, Morris P, Fowler MW (1986) Plant cell biotechnology: a perspective. Enzyme Microb Technol 8:578–597

    Article  CAS  Google Scholar 

  • Svoboda GH, Blake DA,(1975) The phytochemistry and pharmacology of Catharanthus roseus (L.) G. Don. In: Taylor WI, Farnsworth NR (eds) The Catharanthus alkaloids. Marcel Dekker, Inc., New York, pp 45–83

    Google Scholar 

  • Taha HS, Abd El-Rahman RA, Abd-El-Kareem FM, Aly UE (2008) Successful application for enhancement and production of anthocyantn pigment from calli cultures of some ornamental plants. AJBAS 2:1148–1156

    CAS  Google Scholar 

  • Taha HS, El-Bahr MK, Seif-El-Nasr MM (2009) In vitro studies on Egyptian Catharanthus roseus (L.) G. Don. IV: Manipulation of some amino acids as precursors for enhanced indole alkaloids production in suspension cultures. AJBAS 3:3137–3144

    CAS  Google Scholar 

  • Ten Hoopen HJG, Vinke JL, Moreno PRH, Verpoorte R, Heijnen JJ (2002) Influence of temperature on growth and ajmalicine production by Catharanthus roseus suspension culture. Enzyme Microb Technol 30:56–65

    Article  CAS  Google Scholar 

  • Threlfall DR, Whitehead IM (1988) Co-ordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry 27:2567–2580

    Article  CAS  Google Scholar 

  • Toppel G, Witte L, Riebesehl B, Von Borstel K, Hartman T (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producing Senecio spp. Plant Cell Rep 6:466–469

    CAS  Google Scholar 

  • Toso RD (2010) Plant cell culture technology: a new ingredient source. Personal care 2:35–38

    Google Scholar 

  • Tripathi L, Tripathi JN (2003) Role of biotechnology in medicinal plants. Trop J Pharma Res 2(2):243–253

    Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between phytophthora pathogens and their hosts. Annual Rev Phytopath 40:137–167

    Article  CAS  Google Scholar 

  • Van Der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  CAS  Google Scholar 

  • Van Der Heijden R, Jacobs DI, Snoeijer W, Hallared D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  PubMed  CAS  Google Scholar 

  • Van Der Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tiss Org Cult 18:231–280

    Article  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Patho 55:85–97

    Article  Google Scholar 

  • Vázquez-Flota F, Hernández-Domínguez E, de Lourdes Miranda-Ham M, Monforte-González M (2009) A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnol Lett 31:591–595

    Article  PubMed  CAS  Google Scholar 

  • Wealth of India (1992) A dictionary of Indian raw materials and industrial products. Volume-3 (Revised) Ca-Ci, Publication and information directorate, Council of scientific and industrial research, New Delhi

    Google Scholar 

  • Wu J, Wang C, Mei X (2001) Stimulation of taxol production and excretion in Taxus spp. cell cultures by rare earth chemical lanthanum. J Biotechnol 85:67–73

    Article  PubMed  CAS  Google Scholar 

  • Wyk BEV, Wink M (2004) Medicinal plants of the world. Pretoria, Briza.

    Google Scholar 

  • Xu M, Dong J (2005) Nitric oxide stimulates indole alkaloid production in Catharanthus roseus cell suspension cultures through a protein kinase-dependent signal pathway. Enzyme Microb Technol 37:49–53

    Article  CAS  Google Scholar 

  • Yang J, Yu M, January YN, January LY (1997) Stabilization of ion selectivity alters by pore loop ion pairs in an inwardly rectifying potassium channel. Proc Nat Acad Sci USA 94:1568–1572

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH (1991) Chasing the enzymes of secondary metabolism: Plant cell cultures as a pot of gold. Phytochemistry 30:3861–3863

    Article  CAS  Google Scholar 

  • Zhang C, Jian-Yong W (2003) Ethylene inhibitors enhance elicitor-induced paclitaxel production in suspension cultures of Taxus spp. Cells. Enzyme Microb Technol 32:71–77

    Article  CAS  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2000a) Promotion of indole alkaloid production in Catharanthus roseus cell cultures by rare earth elements. Biotech Lett 22:825–828

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, Guo YQ (2000b) Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock. Biotechnol Lett 22:1227–1231

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, He XW (2000c) Improved indole alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals. Biotechnol Lett 22:1221–1226

    Article  CAS  Google Scholar 

  • Zhao J, Hu Q, Zhu WH (2001a) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microb Technol 28:673–681

    Article  CAS  Google Scholar 

  • Zhao J, Hu Q, Guo Y-Q, Zhu W-H (2001b) Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+ influx and the oxidative burst. Plant Sci 161:423–431

    Article  CAS  Google Scholar 

  • Zhao J, Hu Q, Guo YQ, Zhu WH (2001c) Effects of stress factors, bioregulators and precursors on indole alkaloid production in the compact callus clusters culture of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698

    Article  CAS  Google Scholar 

  • Zhao J, Hu Q, Zhu WH (2001d) Selection of fungal elicitors to increase inadole alkaloid accumulation in Catharanthus roseus suspension cell cultures. Enzyme Microb Technol 28:666–672

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, Guo YQ (2001e) Compact callus cluster suspension cultures of Catharanthus roseus with enhanced indole alkaloid biosynthesis. In-vitro Cell Dev Biol Plant 37:68–72

    Article  CAS  Google Scholar 

  • Zheng Z, Wu M (2004) Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Sci 166:507–514

    Article  CAS  Google Scholar 

  • Zimmermann S, Frachisse JM, Thomine S, Barbier-Brygoo H, Guern J (1998) Elicitor-induced chloride efflux and anion channels in tobacco cell suspensions. Plant Physiol Biochem 36:665–674

    Article  CAS  Google Scholar 

  • Zuccarini P (2009) Tropospheric ozone as a fungal elicitor. J Biosci 34:125–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first author is thankful to Council of Scientific and Industrial Research (CSIR) for receiving Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Hameed Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Siddiqui, Z., Mujib, A., Mahmooduzzafar, Aslam, J., Rehman Hakeem, K., Parween, T. (2013). In vitro Production of Secondary Metabolites Using Elicitor in Catharanthus roseus: A Case Study. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_14

Download citation

Publish with us

Policies and ethics