Skip to main content

An Overview of Omics for Wheat Grain Quality Improvement

  • Chapter
  • First Online:
Crop Improvement

Abstract

Cereal grain quality aspects are integral aspects of a complex food chain, which assimilate outputs achievable by breeding, production and processing. In order to get better economic gains and be internationally competitive in diverse market scenarios, it is paramount to breed wheat cultivars with better grain quality. Higher grain quality demands are exponentially increasing due to novel processing technologies, environmental changes and change in consumer preferences due to striking demographic shifts. Advances in the genomic arena of grain quality are considered crucial for defining genes and their networks underpinning functional flour qualities. The complexities associated with the genes underlying these traits can be resolved by elucidating functional and comparative genomics information of relevant genes and the efficient transfer of such information across cultivars. Wheat, due to wider consumption as a staple food, has been a subject of intensive cytogenetic investigations which are now extended further in the genomics era using powerful tools of molecular biology and new genetic stocks. The recent progress in wheat genomics research particularly the use of molecular markers for a variety of purposes and advances in map based positional cloning of several genes has been remarkable. As a result we have been able to better understand the wheat genome and the mechanisms involved in the function of different quality encoding genes. Additionally, we have also utilized information generated from genomics research in producing better quality grains. The advances in the genomics of quality presented in this chapter provide ample information to the underlying gene networks controlling quality traits thereby addressing the challenges of the brisk changes prevalent within the wheat based food systems. Aiding the exploitation of novel genome diversity for quality value addition, research has benefitted from the unique germplasm resource generated by synthesizing wheat from genomic/allelic variability residing in the wheat progenitor accessional resource. These under-utilized diploid wheat progenitor accessions are a promising conduit to wheat productivity enhancement and the novel genomic resource contributing to wheat quality as elucidated here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez JB, Cabalero L, Nadal S, Ramirez MC, Martin A (2009) Development and gluten strength evaluation of introgression lines of Triticum urartu in durum wheat. Cereal Res Commun 37:243–248

    CAS  Google Scholar 

  • An XL, Li XH, Xiong XJ, Yan YM, Zhang YZ, Gao LY, Wang AL, Wang K, Zeller FJ, Hsam SLK (2009) Identification and isolation of a new x-type HMW glutenin subunit 1Dx1.6t gene from Aegilops tauschii. Plant Breed 128:41–45

    CAS  Google Scholar 

  • Appelbee MJ, Mekuria GT, Nagasandra V, Bonneau JP, Eagles HA, Eastwood RF, Mather DE (2009) Novel allelic variants encoded at the Glu-D3 locus in bread wheat. J Cereal Sci 49:254–261

    CAS  Google Scholar 

  • Araki E, Miura, H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Google Scholar 

  • Atienza SG, Alvarez JB, Villegas AM, Giménez MJ, Ramírez MC, Martín A, Martín LM (2002) Variation for the low-molecular-weight glutenin subunits in a collection of Hordeum chilense. Euphytica 128:269–277

    Google Scholar 

  • Avivi L (1978) High protein content in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding (ISGPB), New Delhi pp 372–380

    Google Scholar 

  • Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219

    PubMed  CAS  Google Scholar 

  • Bibi A, Rasheed A, Kazi AG, Mahmoood T, Ajmal S, Mujeeb-Kazi A (2012) High-molecular-weight (HMW) glutenin subunit composition of the Elite-II synthetic hexaploid wheat subset (Triticumturgidum x Aegilops tauschii; 2n = 6x = 42; AABBDD). Plant Genet Resour 10:1–4

    CAS  Google Scholar 

  • Bietz JA, Huebner FR, Sanderson JE, Wall JS (1977) Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem 54:1070–1083

    CAS  Google Scholar 

  • Bietz JA, Shepherd KW, Wall JS (1975) Single-kernel analysis of glutenin: use in wheat genetics and breeding. Cereal Chem 52:513–532

    CAS  Google Scholar 

  • Bietz JA, Wall JS (1973) Isolation and characterization of gliadin-like subunits from glutenins. Cereal Chem. 50:537–547

    CAS  Google Scholar 

  • Blanco A, Resta P, Simeone R, Parmar S, Shewry PR, Sabelli P, Lafiandra D (1991) Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum. Theor Appl Genet 82:358–362

    CAS  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Google Scholar 

  • Breseghello F, Finney PL, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells ME (2005) Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci 45:1685–1695

    CAS  Google Scholar 

  • Butow BJ, Gale KR, Ikea J, Juhasz A, Bedo Z, Tamas L, Gianibelli MC (2004) Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet 109:1525–1535

    PubMed  CAS  Google Scholar 

  • Caballero L, Martin MA, Alvarez JB (2008) Allelic variation for the high- and low-molecular-weight glutenin subunits in wild diploid wheat (Triticum urartu) and its comparison with durum wheat. Aus J Agric Res 59:906–910

    CAS  Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 4:143–150

    Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Flucher GR, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft× hard wheat cross. Crop Sci 39:1184–1195

    Google Scholar 

  • Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Siritunga D, Zhu J, Gendre F, Roue´ C, Ve´rel A, Sorrells ME(2001) Quantitative trait loci associated with milling and baking quality in a soft by hard wheat cross. Crop Sci 41:1275–1285

    CAS  Google Scholar 

  • Cane K, Spackman M, Eagles HA (2004) Puroindoline genes and their effects on grains quality traits in southern Australian wheat cultivars. Aus J Agric Res 55:89–95

    CAS  Google Scholar 

  • Cantrell RG, Joppa LR (1991) Genetic analysis of quantitative traits in wild emmer (Triticumturgidum L. var. dicoccoides). Crop Sci 31:645–649

    Google Scholar 

  • Cantu D, Pearce SP, Distelfeld A, Christiansen MW, Uauy C, Akhunov E, Fahima T, Dubcovsky J (2011) Effect of the down-regulation of the high grain protein content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics 12:1–12

    Google Scholar 

  • Cao S, Xu H, Li Z, Wang X, Wang D, Zhang A (2007) Identification and characterization of a novel Ag. intermedium HMW-GS gene from T. aestivum-Ag. intermedium addition lines TAI-I series. J Cereal Sci 45:293–301

    CAS  Google Scholar 

  • Carter AH, Garland-Campbell K, Morris FC, Kidwell KK (2012) Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor Appl Genet 124:1079–1096

    PubMed  CAS  Google Scholar 

  • Chalmers KJ, Rathjen AJ, Langridge P (1999) Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Mol Breed 5:561–568.

    Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and aegilops). Plant Cell 17:1033–1045

    PubMed  CAS  Google Scholar 

  • Chen F, Zhang FY, Xia XC, Dong ZD, Cui DQ (2012) Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Mol Breed. doi:10.1007/s11032-011-9553-2

    Google Scholar 

  • Chen M, Wilkinson M, Tosi P (2005) Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theor Appl Genet 111:1159–1166

    PubMed  CAS  Google Scholar 

  • Chen Q, Qi P, Wei Y, Wang J, Zheng Y (2009) Molecular Characterization of the pina Gene in Einkorn Wheat. Biochem Genet 47:384–396

    PubMed  CAS  Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit Rev Food Sci Nutr 13:297–335

    CAS  Google Scholar 

  • Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breed 125:529–531

    CAS  Google Scholar 

  • Ciaffi M, Dominici L, Lafiandra D (1998) High molecular weight glutenin subunit variation in wild and cultivated einkorn wheat. Plant Syst Evol. 209:123–137

    CAS  Google Scholar 

  • Ciaffi M, Lafiandra D, Porceddu E, Benedettelli S (1993) Storageprotein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theor Appl Genet 86:474–480

    CAS  Google Scholar 

  • Ciaffi M, Lafiandra D, Turchetta T, Ravaglia S, Bariana H, Gupta R, MacRitchie F (1995) Bread making potential of durum wheat lines expressing both x- and y-type subunits at the Glu-A1 locus. Cereal Chem 72:465–469

    CAS  Google Scholar 

  • Cloutier S, Rampitsch C, Penner GA (2001) Cloning and expression of a LMW-i glutenin gene. J Cereal Sci 33:143–154

    CAS  Google Scholar 

  • D’Ovidio R, Masci S (2004) The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39:321–339

    Google Scholar 

  • D’Ovidio R, Masci S, Porceddu E (1995) Development of a set of oligonucleotide primers specificc for genes at the Glu-1 complex loci of wheat. Theor Appl Genet 91:189–194

    Google Scholar 

  • De Bustos A, Jouve N (2003) Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theor Appl Genet 107:74–83

    PubMed  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Current Opin Plant Biol 8:155–162

    CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plantarum 127:635–644

    Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytologist 169:753–763

    PubMed  CAS  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2 cm region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6 and a 350-kb region on rice chromosome 2. Func Integrat Genom 4:59–66

    PubMed  CAS  Google Scholar 

  • Dong CH, Ma ZY, Xia XC, Zhang LP, He ZH (2012) Allelic variation at the TaZds-A1 locus on wheat chromosome 2A and development of a functional marker in common wheat. Agric Sci China (in press)

    Google Scholar 

  • DuPont FM, Vensel WH, Chan R, Kasarda DD (2000) Characterization of the 1Btype ω-gliadins from Triticum aestivum cultivar Butte. Cereal Chem 77:607–614

    CAS  Google Scholar 

  • Elangovan M, Rai R, Dholakia BB, Lagu MD, Tiwari R, Gupta RK, Rao VS, Roder MS, Gupta VS (2008) Molecular genetic mapping of quantitative trait loci associated with loaf volume in hexaploid wheat (Triticum aestivum). J Cereal Sci 47:587–598

    Google Scholar 

  • FAO (2009) World wheat statistics. Food and Agriculture Organization, Rome

    Google Scholar 

  • Galili G, Feldman M (1984) Mapping of glutenin and gliadin genes located on chromosome 1B of common wheat. Mol Gen Genet 193:293–298

    CAS  Google Scholar 

  • Galterio G, Cardarilli D, Codianni P, Acquistucci R (2001) Evaluation of chemical and technological characteristics of new lines of Triticum turgidum ssp dicoccum. Nahrung 45:263–266

    PubMed  CAS  Google Scholar 

  • Gao L, Ma W, Chen L, Wang K, Ki J, Wang S, Békés F, Appels R, Yan Y (2010) Characterisation and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. J Agric Food Chem 58:2777–2786

    PubMed  CAS  Google Scholar 

  • Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: CDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57

    PubMed  CAS  Google Scholar 

  • Geng HW, He ZH, Zhang LP, Qu YY, Xia XC (2012) Cloning the lipoxygenase gene on chromosome 4BS and development of functional markers in common wheat. Crop Sci 52. doi:10.2135/cropsci2011.07.0365

    Google Scholar 

  • Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B, MacRitchie F (2001) Polymorphism of high Mr glutenin subunits in Triticum tauschii: characterization by chromatography and electrophoresis methods. J Cereal Sci 33:39–52

    CAS  Google Scholar 

  • Gianibelli MC, Gupta RB, MacRitchie F (2000) HMW and LMW subunits of glutenin of Triticum tauschii, the D genome donor to hexaploid wheat. In: Schofield JD (ed.), Wheat Structure, Biochemistry and Functionality. The Royal Society of Chemistry, UK pp 139–145

    Google Scholar 

  • Gianibelli MC, Larroque OR, MacRichie F, Wrigley CW (2001) Biochemical, genetic and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646

    CAS  Google Scholar 

  • Gianibelli MC, Masci S, Larroque OR, Lafiandra D, MacRitchie F (2002) Biochemical characterization of a novel polymeric protein subunit from bread wheat (Triticum aestivum L.). J Cereal Sci 35:265–276

    CAS  Google Scholar 

  • Giroux MJ, Morris CF (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components Puroinodoline a and b. Proceedings Nat Acad Sci U S A 95:6262–6266

    Google Scholar 

  • Gollan P, Smith K, Bhave M (2007) Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. J Cereal Sci 45:184–198

    CAS  Google Scholar 

  • Guo ZF, Dong P, Long XY, Wei YM, Zhang LJ, Zheng YL (2008) Molecular characterization of LMW prolamines from Crithopsis delileana and the comparative analysis with those from Triticeae. Hereditas 145:204–211

    Google Scholar 

  • Gupta RB, Shephard KW (1990) Two-step one-dimensional SDSPAGE analysis of LMW subunits of glutelin. 2. Genetic control of the subunits in species related to wheat. Theor Appl Genet 80:183–187

    CAS  Google Scholar 

  • Gupta RB, Shepherd KW (1993) Production of multiple wheat rye 1RS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheat using these stocks. Theor Appl Genet 85:719–728

    CAS  Google Scholar 

  • Gupta RB, Singh NK, Shepherd KW (1989) The cumulative effects of allelic variation in LMW and HMW glutenin subunits on physical dough properties in the progeny of two bread wheat. Theor Appl Genet 77:57–62

    CAS  Google Scholar 

  • Gutierrez MV, Guzman C, Martin LM, Alvarez JB (2011) Molecular characterization of the Glu-Ay gene from Triticum urartu for its potential use in quality wheat breeding. Plant Genet Resour 9:334–337

    CAS  Google Scholar 

  • Guzman C, Caballero L, Martın MA, Alvarez JB (2012) Molecular characterization and diversity of the Pina and Pinb genes in cultivated and wild diploid wheat. Mol Breed doi:10.1007/s11032-011-9599-1

    Google Scholar 

  • Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB, Tatham AS, Shewry PR (1992) Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83:373–378

    CAS  Google Scholar 

  • Harberd NP, Bartels D, Thompsom RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet 198:234–242

    CAS  Google Scholar 

  • Hassani ME, Shariflou MR, Gianibelli MC, Sharp PJ (2006) Gli -Dtt1 and a novel γ-gliadin gene in Aegilops tauschii. Plant Breed 125:27–31

    CAS  Google Scholar 

  • He XY, He ZH, Ma W, Appels R, Xia XC (2009a) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563

    CAS  Google Scholar 

  • He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47–58

    PubMed  CAS  Google Scholar 

  • He XY, Wang JW, Ammar K, Pena RJ, Xia XC, He ZH (2009b) Allelic variants at the Psy-A1 and Psy-B1 loci in durum wheat and their associations with grain yellowness. Crop Sci 49:2058–2064

    CAS  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    PubMed  CAS  Google Scholar 

  • Hsam SLK, Kieffer R, Zeller FJ (2001) Significance of Aegilops tauschii glutenin genes on breadmaking properties of wheat. Cereal Chem 78:521–525

    CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    PubMed  CAS  Google Scholar 

  • Ikeda TM, Araki E, Fujita Y, Yano H (2006) Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheat. Theor Appl Genet 112:327–334

    PubMed  CAS  Google Scholar 

  • Ikeda TM, Nagamine T, Fukuoka H, Yano H (2002) Identification of new low-molecular weight glutenin subunit genes in wheat. Theor Appl Genet 104:680–687

    PubMed  CAS  Google Scholar 

  • Jackson EA, Holt LM, Payne PI (1983) Characterisation of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two dimensional electrophoresis and the chromosomal localisation of their controlling genes. Theor Appl Genet 66:29–37

    CAS  Google Scholar 

  • Jackson EA, Holt LM, Payne PI (1985) Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat (Triticum aestivum). Genet Res 47:11–17

    Google Scholar 

  • Jackson EA, Morel MH, Sontag-Strohm T, Branlard G, Metakovsky EV, Redaelli R (1996) Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.) J Genet Breed 50:321–336

    CAS  Google Scholar 

  • Jiang CX, Pei YH, Zhang YZ, Li XH, Yao DN, Yan YM, Hsam SLK, Zeller FJ (2008) Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas 145:92–98

    PubMed  Google Scholar 

  • Jin H, Yan J, Peña RJ, Xia XC, Morgounov A, Han LM, Zhang Y, He ZH (2011) Molecular detection of high- and low-molecular weight glutenin subunit genes in common wheat cultivars from 20 countries using allele-specific markers. Crop Pasture Sci 62:746–754

    CAS  Google Scholar 

  • Joppa LR, Hart GE, Hareland GA (1997) Mapping a QTL for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • Juhász A, Gianibelli MC (2006) Low-molecular-weight glutenin subunits: insight into this abundant subunit group present in glutenin polymers. In: Wrigley CW, Békés F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. AACC International Press, St Paul, pp 171–212

    Google Scholar 

  • Kade M, Barneix AJ, Olmos S, Dubcovsky J (2005) Nitrogen uptake and remobilization in tetraploid ‘Langdon’ durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed 124:343–349

    CAS  Google Scholar 

  • Kasarda DD, Autran JC, Lew EJL, Nimmo CC, Shewry PR (1983) N-terminal amino acid sequences of ω-gliadins and ω-secalins; Implications for the evolution of prolamin genes. Biochim Biophy Acta 747:138–150

    CAS  Google Scholar 

  • Kasarda DD, Okita TW, Bernardin JE, Baecker PA, Nimmo CC, Lew EJL, Dietler MS, Green FC (1984) Nucleic (cDNA) and amino acid sequences of α-type gliadins from wheat (Triticum aestivum). Proceedings Nat Acad Sci, U S A 81:4712–4716.

    Google Scholar 

  • Khalid M, Mahmood T, Rasheed A, Kazi AG, Ali A, Mujeeb-Kazi A (2013) GluDt1 allelic variation in synthetic hexaploid wheats derived from durum cultivar ‘Decoy’ x Aegilops tauschii accessional crosses. Pak J Bot 45:409–414

    Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    PubMed  CAS  Google Scholar 

  • Lafiandra D, Benedettelli S, Porceddu E (1988) Null forms for storage proteins in bread wheat and durum. pp 963–967 In: Miller TE, Koebner RMD (eds). proceeding the 7th International Wheat Genetics Symposium. Inst. Plant Sci Res, Cambridge

    Google Scholar 

  • Lafiandra D, Margiotta B, Colaprico G, Masci S, Roth MR, MacRitchie F (2000) Introduction of the D-genome related high- and low-Mr glutenin subunits into durum wheat and their effect on technological properties. In: Shewry PR., Thatam AS (eds.), Wheat Gluten, Royal Society of Chemistry, UK, pp 51–54

    Google Scholar 

  • Lafiandra D, Masci S, Margiotta B, Ambrogio ED (1998) Development of durum and bread wheat with increased number of high molecular weight glutenin subunits. pp 261–264, 146 In: Proceeding 9th International Wheat Genetics Symposium, Vol. 4. Grain Quality. Slinkard AE (ed). University of Saskatchewan, Canada

    Google Scholar 

  • Lee YK, Bekes F, Gras P, Ciaffi M, Morell MK, Appels R (1999) The low-molecular-weight glutenin subunit proteins of primitive wheat. IV. Functional properties of products from individual genes. Theor Appl Genet 98:149–155

    CAS  Google Scholar 

  • Lei ZS, Gale KR, He ZH, Gianibelli C, Larroque O, Xia SX, Butow BJ, Ma W (2006) Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci 43:94–101

    CAS  Google Scholar 

  • Li XH, Ma WJ, Gao LY, Zhang YZ, Wang AL, Ji KM, Wang K, Appels R, Yan YM (2008) A novel chimeric low molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics 180:93–101

    PubMed  CAS  Google Scholar 

  • Li XH, Wang K, Wang SL, Gao LY, Xie XX, Hsam SLK, Zeller FJ, Yan YM (2010) Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species. Theor Appl Genet 121:845–856

    PubMed  CAS  Google Scholar 

  • Liang D, Tang JW, PenËœa RJ, Singh R, He XY, Shen XY, Yao DN, Xia XC, He ZH (2010) Characterization of CIMMYT bread wheat for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172:235–250

    CAS  Google Scholar 

  • Lillemo M, Simeone MC, Morris CF (2002) Analysis of puroindoline a and b sequences from Triticum aestivum cv. ‘Penawawa’ and related taxa. Euphytica 126:321–331

    CAS  Google Scholar 

  • Liu CY, Shepherd KW (1996) Variation of B subunits of glutenin in durum, wild and less-widely cultivated tetraploid wheat. Plant Breed 115:172–178

    CAS  Google Scholar 

  • Liu L, Ikeda TM, Branlard G, Peña RJ, Rogers WJ, Lerner SE, Kolman MA, Xia XC, Wang LH, Ma WJ, Appels R, Yoshida H, Wang AL, Yan YM, He ZH (2010) Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol 10:124

    PubMed  Google Scholar 

  • Liu SW, Gao X, Xia GM (2008b) Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Theor Appl Genet 116:325–334

    CAS  Google Scholar 

  • Liu SW, Zhao SG, Chen FG, Xia GM (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. BMC Evol Biol 7:76

    PubMed  Google Scholar 

  • Liu SX, Chao SM, Anderson JA (2008a) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118:177–183

    CAS  Google Scholar 

  • Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D (2003) Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor Appl Genet 106:1368–1378

    PubMed  CAS  Google Scholar 

  • Long H, Wei YM, Yan ZH, Baum B, Nevo E, Zheng YL (2005) Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor Appl Genet 111:1251–1259

    PubMed  CAS  Google Scholar 

  • Luo Z, Chen FG, Feng DS, Xia GM (2005) LMW glutenin genes in Agropyron elongatum and their potential value in wheat breeding. Theor Appl Genet 111:272–280

    PubMed  CAS  Google Scholar 

  • Ma DY, Yan J, He ZH, Wu L, Xia XC (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 29:43–52

    CAS  Google Scholar 

  • Ma W, Anderson O, Kuchel H, Bonnardeaux Y, Collins H, Morell MK, Langridge P, Appels R (2009) Genomics of quality traits. In: Feuillet C, Muehlbauer GJ (eds.) Genetics and Genomics of the Triticeae. Springer, New York, pp  611–652

    Google Scholar 

  • Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134:51–60

    CAS  Google Scholar 

  • Margiotta B, Urbano M, Colaprico G, Johansson E, Buonocore F, D’Ovidio R, Lafiandra D (1996) Detection of y-type subunit at the Glu-A1 locus in some Swedish bread wheat lines. J Cereal Sci 23:203–211

    CAS  Google Scholar 

  • Masci SM, Porceddu E, Colaprico G, Lafiandra D (1991) Comparison of the B and D subunits of glutenin encoded at the Glu-D3 locus in two biotypes of the common wheat cultivar Newton with different technological characteristics. J Cereal Sci 14:35–46

    CAS  Google Scholar 

  • Massa AN, Morris CF, Gill BS (2004) Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes in Aegilops tauschii coss. Crop Sci 44:1808–1816

    CAS  Google Scholar 

  • Mattern PJ, Morris R, Schmidt JW, Johnson VA (1973) Location of genes for kernel properties in the wheat cultivar ‘Cheyenne’ using chromosome substitution lines. In: Sears ER, Sears LMS (eds.) Proceeding 4th Int. Wheat Genet. Symp. University of Missouri, Columbia pp 703–707

    Google Scholar 

  • McCartney CA, Somers DJ, Lukow O, Ames N, Noll J, Cloutier S, Humphreys DG, McCallum BD (2006) QTL analysis of quality traits in the spring wheat cross RL4452 by ‘AC Domain’. Plant Breed 125:565–575

    CAS  Google Scholar 

  • McIntosh R, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X (2010) Catalogue of gene symbols for wheat 2010 supplement. Annual Wheat Newsletter 56:273–282

    Google Scholar 

  • Mecham DK, Kasarda DD, Qualset CO (1978) Genetic aspects of wheat gliadin proteins. Biochem Genet 16:831–853

    PubMed  CAS  Google Scholar 

  • Metakovsky EV (1991) Gliadin allele identification in common wheat II. Catalogue of gliadin alleles in common wheat. J Genet Breed 45:325–344

    Google Scholar 

  • Metakovsky EV, Chernakov VM, Upelniek VP, Redaelli R, Dardevet M, Branlard G, Pogna NG (1996) Recombination mapping of minor omega-gliadin-coding loci on chromosome 1A of common wheat: a revision. J Genet Breed 50:277–286

    CAS  Google Scholar 

  • Metakovsky EV, Novoselskaya AY, Sozinov AA (1984) Genetic analysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis. Theor Appl Genet 69:31–37

    CAS  Google Scholar 

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    PubMed  CAS  Google Scholar 

  • Morris CF, Bhave M (2008) Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. J Cereal Sci 47:277–287

    Google Scholar 

  • Müller S, Wieser H (1995) Disulphide bonds of α-type gliadins. J Cere Sci 22: 21–27

    Google Scholar 

  • Müller S, Wieser H (1997) The location of disulphide bonds in monomeric γ-type gliadins. J Cereal Sci 26:169–176

    Google Scholar 

  • Nakamura T, Vrinten P, Saito M, Konda M (2002) Rapid classification of partial waxy wheat using PCR-based markers. Genome 45:1150–1156

    PubMed  CAS  Google Scholar 

  • Neelam K, Rawat N, Tiwari VK, Kumar S, Chhuneja P, Singh K, Randhawa GS, Dhaliwal HS (2011) Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Mol Breed 28:623–634

    CAS  Google Scholar 

  • Nelson JC, Andreescu C, Breseghello F, Finney PL, Daisy G, Gualberto DG, Bergman CJ, Pena RJ, Perretant MR, Leroy P, Qualset CO, Sorrells ME (2006) Quantitative trait locus analysis of wheat quality traits. Euphytica 149:145–159

    CAS  Google Scholar 

  • Niu ZX, Klindworth R, Wang R R-C, Jauhar PP, Larkin PJ, Xu SS (2011) Characterization of HMW glutenin subunits in Thinopyrum intermedium, Th. bessarabicum, Lophopyrum elongatum, Aegilops markgrafii, and their addition lines in wheat. Crop Sci 51:667–677

    CAS  Google Scholar 

  • Obukhova LV, Generalova GV, Agafonov AV, Kumarev VP, Popova NA, Gulevich VV (1997) A comparative molecular genetic study of glutelins in wheat and Elymus. Genetika 33:1001–1004

    CAS  Google Scholar 

  • Obukhova LV, Maystrenko OI, Generalova GV, Ermakova MF, Popova RK (1997) Composition of high molecular weight glutenin subunits in common wheat substitution lines created from cultivars with contrasting bread-making qualities. Russian J Genetics 33:5–100

    Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    PubMed  CAS  Google Scholar 

  • Osborne TB (1907) The protein of the wheat kernel. Publication No. 84. Carnegie Institute: Washington, DC

    Google Scholar 

  • Ovesna J, Novakova I, Kucera L, Dotlacil L (2001) Characterisation of variability at Glu-3 loci in some European wheat obsolete cultivars and landraces using PCR. Cereal Res Commun 29:205–213

    Google Scholar 

  • Parker GD, Chalmers KJ, Rathgen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97:238–245

    CAS  Google Scholar 

  • Payne PI (1987) Genetic of wheat storage proteins and the effect of allelic variation on bread making quality. Ann Rev Plant Physiol 38:141–153

    CAS  Google Scholar 

  • Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58:113–120

    CAS  Google Scholar 

  • Payne PI, Lawrence GJ (1983) Catalogue or alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for the high-molecular weight subunit of glutenin whose in hexaploid wheat. Cereal Res Commun 11:29–35

    Google Scholar 

  • Payne PI, Nightingale MA, Krattinger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and bread making quality of British grown wheat varieties. J Sci Food Agric 40:51–65

    CAS  Google Scholar 

  • Pfluger LA, D’Ovidio R, Margiotta B, Pena R, Mujeeb-Kazi A, Lafiandra D (2001) Characterisation of high-and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheat. Theor Appl Genet 103:1293–1301

    CAS  Google Scholar 

  • Piston F, Martin A, Dorado G, Barro F (2005) Cloning and molecular characterization of B-hordeins from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 111:551–560

    PubMed  CAS  Google Scholar 

  • Pogna NE, Gazza L, Boggini G (2002) Puroindoline and kernel hardness in Triticum aestivum and Triticum monococcum. Annual Wheat Newsletter. Experimental Institute for Cereal Research, Italy p 60

    Google Scholar 

  • Pogna NE, Metakovsky EV, Redaelli R, Raineri F, Dachkevitch T (1993) Recombination mapping of Gli-5, a new gliadin-coding locus on chromosomes 1A and 1B in common wheat. Theor Appl Genet 87:113–121

    CAS  Google Scholar 

  • Popineau Y, Pineau F (1987) Investigation of surface hydrophobicities of purified gliadins by hydrophobic interaction chromatography, reversed-phase high performance chromatography and a polar ligand binding. J Cereal Sci 5:215–231

    CAS  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525

    PubMed  CAS  Google Scholar 

  • Qi PF, Wei YM, Ouellet T, Chen Q, Tan Z, Zheng YL (2009) The gamma-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species. BMC Genomics 10:168

    PubMed  Google Scholar 

  • Ragupathy R, Naeem HA, Reimer E, Lukow OM, Sapirstein HD, Cloutier S (2008) Evolutionary origin of the segmental duplication encompassing the wheat Glu-B1 locus encoding the over expressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet 116:283–296

    PubMed  CAS  Google Scholar 

  • Ram S, Sharma S, Verma A, Tyagi BS, Pena RJ (2011) Comparative analyses of LMW glutenin alleles in bread wheat using allele specific PCR and SDS-PAGE. J Cereal Sci 54:488–493

    CAS  Google Scholar 

  • Ram S, Verma A, Sharma S (2010) Large variability exist in phytase levels among indian wheat varieties and synthetic hexaploids. J Cereal Sci 52:486–490

    CAS  Google Scholar 

  • Rasheed A, Mahmood T, Kazi AG, Ghafoor A, Mujeeb-Kazi A (2012) Allelic variation and composition of HMW-GS in advanced lines derived from D-genome synthetic hexaploid/bread wheat (Triticum aestivum L.). J Crop Sci Biotechnol 15:1–7

    Google Scholar 

  • Rawat N, Neelam K, Tiwari VK, Randhawa GS, Friebe B, Gill BS, Dhaliwal HS (2011) Development and molecular characterization of wheat—Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 54:943–953

    PubMed  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Neelam K, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Development and characterization of wheat-Aegilops kotschyi amphiploids with high grain iron and zinc. Plant Genet Resour 7:271–280

    CAS  Google Scholar 

  • Rehman A, Evans N, Gianibelli MC, Rose RJ (2008) Allelic variation in high and low molecular weight glutenins at the Glu-Dt locus of Aegilops tauschii as a potential source for improving bread wheat quality. Aus J Agric Res 59:399–405

    CAS  Google Scholar 

  • Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Wurschum T (2011) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970

    PubMed  Google Scholar 

  • Reynolds MP, Foulkes JM, Slafer GA, Berry P, Parry MAJ, Snape J, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    PubMed  CAS  Google Scholar 

  • Saito M, Vrinten P, Ishikawa G, Graybosch R, Nakamura T (2009) A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs. Mol Breed 23:209–217

    CAS  Google Scholar 

  • Schwarz G, Felsenstein FG, Wenzel G (2004) Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1–1d (Bx-6) in wheat. Theor Appl Genet 109:1064–1069

    PubMed  CAS  Google Scholar 

  • Shang HY, Wei YM, Long H, Yan ZH, Zheng YL (2005) Identification of LMW glutenin-like genes from Secale sylvestre Host. Russian J Genet 41:1372–1380

    CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Phil Trans R Soc Lond B 357:133–142

    CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS (1989) The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford Surv. Plant Mol Cell Biol 6:163–219

    CAS  Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    PubMed  CAS  Google Scholar 

  • Shewry PR, Tatham AS (1997) Disulphide bonds in wheat gluten proteins. J Cereal Sci 25:207–227

    CAS  Google Scholar 

  • Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: a reassessment. J Cereal Sci 4:97–106

    CAS  Google Scholar 

  • Shewry, PR, Halford NG, Tatham AS (1992) High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    CAS  Google Scholar 

  • Simeone MC, Gedye KR, Mason-Gammer R (2006) Conserved regulatory elements identified from a comparative puroindoline gene sequence survey of Triticum and Aegilops diploid taxa. J Cereal Sci 44:21–33

    CAS  Google Scholar 

  • Simmonds N (1995) The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315

    CAS  Google Scholar 

  • Singh NK, Shepherd KW (1985) The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm. Theor Appl Genet 7:79–92

    CAS  Google Scholar 

  • Singh NK, Shepherd KW (1988) Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theor Appl Genet 75:628–641

    CAS  Google Scholar 

  • Sobko TA (1984) Identification of a new locus which controls the synthesis of alcohol-soluble protein in the endosperm of winter common wheat. J Agric Sci 7:78–80

    Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier M.-F, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Sreeramulu G, Singh NK (1997) Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.) Genome 40:41–48

    PubMed  CAS  Google Scholar 

  • Sun DJ, He ZH, Xia XC, Zhang LP, Morris CF, Appels R, Ma WJ, Wang H (2005) A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed 16:209–218

    CAS  Google Scholar 

  • Sun M, Yan Y, Jiang Y, Xiao Y, Hu Y, Cai M, Li Y (2004) Molecular cloning and comparative analysis of a y-type inactive HMW glutenin subunit gene from cultivated emmer wheat (Triticum dicoccum L.). Hereditas 141:46–54

    PubMed  Google Scholar 

  • Symes KJ (1965) The inheritance of grain hardness in wheat as measured by the particle size index. Australian J Agric Res 16:113–123

    Google Scholar 

  • Tatham AS, Shewry PR (1985) The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of alpha-, beta-, gamma- and omega- gliadins. J Cereal Sci 3:103–113

    Google Scholar 

  • Tatham AS, Shewry PR (1995) The S-poor prolamins of wheat, barley, and rye. J Cereal Sci 22:1–16

    CAS  Google Scholar 

  • Thomson NH, Miles MJ, Tatham AS, Shewry PR (1992) Molecular images of cereal proteins by STM. Ultramicroscopy 42–44:1118–1122

    Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2008) Development of Triticum turgidum subsp. durum-Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in F1 hybrids. Genome 51:757–766

    Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in A genome diploid wheat. J Hered 100:771–776

    PubMed  CAS  Google Scholar 

  • Tranquilli G, Cuniberti M, Gianibelli MC, Bullrich L, Larroque OR, MacRitchie F, Dubcovsky J (2002) Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. J Cereal Sci 36:9–18

    CAS  Google Scholar 

  • Tranquilli G, Lijavetzky D, Muzzi G, Dubcovsky J (1999) Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol Gen Genet 262:846–850

    PubMed  CAS  Google Scholar 

  • Turnbull K-M, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S (2003) The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat. Genome 46:330–338

    PubMed  CAS  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain Protein, zinc, and iron content in wheat. Science 314:1298–1301

    CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    PubMed  CAS  Google Scholar 

  • Vensel WH, Adalsteins AE, Kasarda DD (1997) Purification and characterization of the glutenin subunits of Triticum tauschii, progenitor of the D genome in hexaploid bread wheat. Cereal Chem 74:108–114

    CAS  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    CAS  Google Scholar 

  • Waines JG. Payne PI (1987) Electrophoretic analysis of the high molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor Appl Genet 74:71–76

    CAS  Google Scholar 

  • Wan Y, Wang D, Shewry PR, Halford NG (2002) Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrical. Theor Appl Genet 104:828–839

    PubMed  CAS  Google Scholar 

  • Wang JR, Yan Z, Wei YM, Zheng YL (2006) Characterization of high-molecular-weight glutenin subunits genes from Elytrigia elongata (Host) Nevski. Plant Breed 125:89–95

    CAS  Google Scholar 

  • Wang JW, He XY, He ZH, Wang H, Xia XC (2009a) Cloning and phylogenetic analysis of phytoene synthase 1 (Psy1) genes in common wheat and related species. Hereditas 146:208–256

    Google Scholar 

  • Wang LH, Li GY, Pena RJ, Xia XC, He ZH (2010) Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). J Cereal Sci 51:305–312

    CAS  Google Scholar 

  • Wang LH, Zhao XL, He ZH, Ma W, Appels R, Pena RJ, Xia XC (2009b) Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor Appl Genet 118:525–539

    CAS  Google Scholar 

  • Wieser H (1995) The precipitating factor in coeliac disease. In: Howdle PD (ed.) pp 191–207 in: clinical Gastroenterology, Int Pract Res. Bailliére Tindall, London

    Google Scholar 

  • Wrigley CW, Bushuk W, Gupta R (1996) Nomenclature: establishing a common gluten language. In: Gluten 96. Wrigley CW (ed.) pp 403–407 RACI, Melbourne

    Google Scholar 

  • Wrigley CW, Shepherd KW (1973) Electrofocusing of grain proteins from wheat genotypes. Annals NY Acad Sci 209:154–162

    CAS  Google Scholar 

  • Xiong L, Wang J, Zheng Y (2010) Analysis of LMW-GS, α- and β-Gliadin gene coding sequences from Triticum macha. Agric Sci China 9:163–169

    CAS  Google Scholar 

  • Xu SS, Khan K, Klindworth DL, Nygard G (2010) Evaluation and characterization of high-molecular weight 1D glutenin subunits from Aegilops tauschii in synthetic hexaploid wheat. J Cereal Sci 52:333–336

    CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1643

    CAS  Google Scholar 

  • Yan Y, Hsam SLK, Yu JZ, Jiang Y, Ohtsuka I, Zeller FJ (2003a) HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor Appl Genet 107:1321–1330

    CAS  Google Scholar 

  • Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003b) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE) acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130:377–385

    CAS  Google Scholar 

  • Yan Y, Zheng J, Xiao Y, Yu J, Hu Y, Cai M, Li Y, Hsam SLK, Zeller FJ (2004a) Identification and molecular characterization of a novel y-type Glu-Dt1 glutenin gene of Aegilops tauschii. Theor Appl Genet 108:1349–1358

    CAS  Google Scholar 

  • Yan ZH, Wan YF, Liu KF, Zheng YL, Wang DW (2002) Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chin Sci Bull 47:220–225

    Google Scholar 

  • Zhang CY, Dong CH, He XY, Zhang LP, Xia XC, He ZH (2011) Allelic variation at the TaZds-D1 locus on wheat chromosome 2DL and their association with yellow pigment content. Crop Sci 51:1580–1590

    CAS  Google Scholar 

  • Zhang W, Gianibelli MC, Rampling LR, Gale KR (2004) Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L). Theor Appl Genet 108:1409–1419

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wu Y, Xiao Y, Yan J, Zhang Y, Zhang Y, Ma C, Xia X, He Z (2009) QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft x hard wheat cross. Crop Pasture Sci 60:587–597

    CAS  Google Scholar 

  • Zhao XL, Xia XC, He ZH, Gale KR, Lei ZS, Appels R, Ma W (2006) Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor Appl Genet 113:1247–1259

    PubMed  CAS  Google Scholar 

  • Zhao XL, Xia XC, He ZH, Lei ZS, Appels R, Yang Y, Sun QX, Ma W (2007a) Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor Appl Genet 114:451–460

    CAS  Google Scholar 

  • Zhao XL, Ma W, Gale KR, Lei ZS, He ZH, Sun QX, Xia XC (2007b) Identification of SNPs and development functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat (Triticum aestivum L.). Mol Breed 20:223–231

    CAS  Google Scholar 

  • Zhao L, Zhang K-P, Liu B, Deng Z, Qu H-L, Tian J-C (2010) A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat. Euphytica 174:325–335

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awais Rasheed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rasheed, A., Mahmood, T., Gul-Kazi, A., Mujeeb-Kazi, A. (2013). An Overview of Omics for Wheat Grain Quality Improvement. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_10

Download citation

Publish with us

Policies and ethics