Skip to main content

Algorithms and Guidelines for Interpretation of DNA Variants

  • Chapter
  • First Online:
Next Generation Sequencing

Abstract

With the increasing amount of molecular genetic testing offered for clinical diagnosis in recent years, there is a rapid growth in the detection of novel or unclassified variants of unknown clinical significance. To determine whether a sequence change is a disease-causing pathogenic mutation or a non-causative variant becomes increasingly important in translational medicine. Interpretation of the clinical significance of an unclassified variant in the mitochondrial genome is even more complicated due to the highly polymorphic feature of the mitochondrial DNA and the unique characteristics of heteroplasmy. The degree of mutant mitochondrial DNA heteroplasmy varies among different tissues; in general, it correlates with the disease severity in affected tissues. In this chapter, we provide updated procedures of evaluating unclassified variants in both the nuclear and mitochondrial genomes by using various databases, computational tools, and structural analysis methods to assist in clinical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingman M, Gyllensten U (2006) mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Res 34:D749–D751

    Article  PubMed  CAS  Google Scholar 

  2. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35:D823–D828

    Article  PubMed  CAS  Google Scholar 

  3. Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, Lyon E, Ward BE (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10:294–300

    Article  PubMed  CAS  Google Scholar 

  4. Cotton RG, Auerbach AD, Beckmann JS, Blumenfeld OO, Brookes AJ, Brown AF, Carrera P, Cox DW, Gottlieb B, Greenblatt MS, Hilbert P, Lehvaslaiho H, Liang P, Marsh S, Nebert DW, Povey S, Rossetti S, Scriver CR, Summar M, Tolan DR, Verma IC, Vihinen M, den Dunnen JT (2008) Recommendations for locus-specific databases and their curation. Hum Mutat 29:2–5

    Article  PubMed  CAS  Google Scholar 

  5. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32:557–563

    Article  PubMed  CAS  Google Scholar 

  6. Bandelt HJ, Salas A, Taylor RW, Yao YG (2009) Exaggerated status of “novel” and “pathogenic” mtDNA sequence variants due to inadequate database searches. Hum Mutat 30:191–196

    Article  PubMed  CAS  Google Scholar 

  7. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  PubMed  CAS  Google Scholar 

  8. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  CAS  Google Scholar 

  9. Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV (2006) Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317–1325

    Article  PubMed  CAS  Google Scholar 

  10. Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A, Thomas A (2006) Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43:295–305

    Article  PubMed  CAS  Google Scholar 

  11. Tchernitchko D, Goossens M, Wajcman H (2004) In silico prediction of the deleterious effect of a mutation: proceed with caution in clinical genetics. Clin Chem 50:1974–1978

    Article  PubMed  CAS  Google Scholar 

  12. Hon LS, Zhang Y, Kaminker JS, Zhang Z (2009) Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach. Hum Mutat 30:99–106

    Article  PubMed  Google Scholar 

  13. Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220:49–65

    Article  PubMed  CAS  Google Scholar 

  14. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4:311–323

    Article  PubMed  CAS  Google Scholar 

  15. Houdayer C (2011) In silico prediction of splice-affecting nucleotide variants. Methods Mol Biol 760:269–281

    Article  PubMed  CAS  Google Scholar 

  16. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    Article  PubMed  CAS  Google Scholar 

  17. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    Article  PubMed  CAS  Google Scholar 

  18. Mohammadi L, Vreeswijk MP, Oldenburg R, van den Ouweland A, Oosterwijk JC, van der Hout AH, Hoogerbrugge N, Ligtenberg M, Ausems MG, van der Luijt RB, Dommering CJ, Gille JJ, Verhoef S, Hogervorst FB, van Os TA, Gomez Garcia E, Blok MJ, Wijnen JT, Helmer Q, Devilee P, van Asperen CJ, van Houwelingen HC (2009) A simple method for co-segregation analysis to evaluate the pathogenicity of unclassified variants; BRCA1 and BRCA2 as an example. BMC Cancer 9:211

    Article  PubMed  Google Scholar 

  19. Helm M, Brule H, Friede D, Giege R, Putz D, Florentz C (2000) Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 6:1356–1379

    Article  PubMed  CAS  Google Scholar 

  20. Wang J, Schmitt ES, Landsverk ML, Zhang VW, Li FY, Graham BH, Craigen WJ, Wong LJ (2012) An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience. Genet Med 14:620–626

    Article  PubMed  Google Scholar 

  21. Guan MX, Fischel-Ghodsian N, Attardi G (1996) Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum Mol Genet 5:963–971

    Article  PubMed  CAS  Google Scholar 

  22. Davidson MM, Walker WF, Hernandez-Rosa E, Nesti C (2009) Evidence for nuclear modifier gene in mitochondrial cardiomyopathy. J Mol Cell Cardiol 46:936–942

    Article  PubMed  CAS  Google Scholar 

  23. Man PY, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF (2003) The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet 72:333–339

    Article  PubMed  CAS  Google Scholar 

  24. DiMauro S, Hirano M (2011) Mitochondrial DNA deletion syndromes, GeneReviews [Internet]

    Google Scholar 

  25. Zhang W, Cui H, Wong LJ (2012) Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem 58:1322–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, J., Landsverk, M. (2013). Algorithms and Guidelines for Interpretation of DNA Variants. In: Wong, LJ. (eds) Next Generation Sequencing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7001-4_6

Download citation

Publish with us

Policies and ethics