Skip to main content

Protein Structural Based Analysis for Interpretation of Missense Variants at the Genomics Era: Using MNGIE Disease as an Example

  • Chapter
  • First Online:

Abstract

The analysis of a group of genes or the whole exome by massively parallel sequencing provides an efficient way to molecular diagnosis of genetic disorders. Meanwhile, tremendous amount of variant data produced brings great challenges for interpretation, particularly for novel variants without functional evidences. There is an urgent need for a nonexperimentally based method to understand their genotype and phenotype correlation. Moreover, missense variants contribute to about 50 % disease-causing changes. This chapter will demonstrate the value of in silico stereochemical analysis in the interpretation of disease-causing missense mutations using thymidine phosphorylase as an example. The integrated approaches including disease clinical phenotype, biochemical genetic analysis, computational prediction, and structural based modeling can be helpful in understanding the pathogenic mechanism of these missense variants. The protein structural based analysis is a valuable tool to visualize small but significant structural changes, thus, can be incorporated into routine variant interpretation pipeline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore SF (2011) Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 3(65):65ra64. doi:10.1126/scitranslmed.3001756

    Google Scholar 

  2. Thusberg J, Vihinen M (2009) Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 30(5):703–714

    Article  PubMed  CAS  Google Scholar 

  3. Thusberg J, Olatubosun A, Vihinen M (2011) Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 32(4):358–368

    Article  PubMed  Google Scholar 

  4. Matsukawa K, Moriyama A, Kawai Y, Asai K, Kato T (1996) Tissue distribution of human gliostatin/platelet-derived endothelial cell growth factor (PD-ECGF) and its drug-induced expression. Biochim Biophys Acta 1314(1–2):71–82

    Article  PubMed  Google Scholar 

  5. Shoffner JM (1993) Mitochondrial neurogastrointestinal encephalopathy disease. Gene Reviews, 1993

    Google Scholar 

  6. Garone C, Tadesse S, Hirano M (2011) Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain 134(Pt 11):3326–3332

    Article  PubMed  Google Scholar 

  7. Massa R, Tessa A, Margollicci M, Micheli V, Romigi A, Tozzi G, Terracciano C, Piemonte F, Bernardi G, Santorelli FM (2009) Late-onset MNGIE without peripheral neuropathy due to incomplete loss of thymidine phosphorylase activity. Neuromuscul Disord 19(12):837–840

    Article  PubMed  Google Scholar 

  8. Marti R, Verschuuren JJ, Buchman A, Hirano I, Tadesse S, van Kuilenburg AB, van Gennip AH, Poorthuis BJ, Hirano M (2005) Late-onset MNGIE due to partial loss of thymidine phosphorylase activity. Ann Neurol 58(4):649–652

    Article  PubMed  CAS  Google Scholar 

  9. Hirano M, Nishigaki Y, Marti R (2004) Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a disease of two genomes. Neurologist 10(1):8–17

    Article  PubMed  Google Scholar 

  10. Nishino I, Spinazzola A, Hirano M (2001) MNGIE: from nuclear DNA to mitochondrial DNA. Neuromuscul Disord 11(1):7–10

    Article  PubMed  CAS  Google Scholar 

  11. Said G, Lacroix C, Plante-Bordeneuve V, Messing B, Slama A, Crenn P, Nivelon-Chevallier A, Bedenne L, Soichot P, Manceau E, Rigaud D, Guiochon-Mantel A, Matuchansky C (2005) Clinicopathological aspects of the neuropathy of neurogastrointestinal encephalomyopathy (MNGIE) in four patients including two with a Charcot-Marie-Tooth presentation. J Neurol 252(6):655–662

    Article  PubMed  Google Scholar 

  12. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed  CAS  Google Scholar 

  13. Bao L, Zhou M, Cui Y (2005) nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res 33(Web Server issue):W480–W482

    Google Scholar 

  14. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  PubMed  CAS  Google Scholar 

  15. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25(21):2744–2750

    Article  PubMed  CAS  Google Scholar 

  16. Minor DL Jr (2007) The neurobiologist’s guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Neuron 54(4):511–533

    Article  PubMed  CAS  Google Scholar 

  17. Machius M (2003) Structural biology: a high-tech tool for biomedical research. Curr Opin Nephrol Hypertens 12(4):431–438

    Article  PubMed  CAS  Google Scholar 

  18. Mitsiki E, Papageorgiou AC, Iyer S, Thiyagarajan N, Prior SH, Sleep D, Finnis C, Acharya KR (2009) Structures of native human thymidine phosphorylase and in complex with 5-iodouracil. Biochem Biophys Res Commun 386(4):666–670

    Article  PubMed  CAS  Google Scholar 

  19. Pugmire MJ, Ealick SE (1998) The crystal structure of pyrimidine nucleoside phosphorylase in a closed conformation. Structure 6(11):1467–1479

    Article  PubMed  CAS  Google Scholar 

  20. Pugmire MJ, Cook WJ, Jasanoff A, Walter MR, Ealick SE (1998) Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase. J Mol Biol 281(2):285–299

    Article  PubMed  CAS  Google Scholar 

  21. El Omari K, Bronckaers A, Liekens S, Perez-Perez MJ, Balzarini J, Stammers DK (2006) Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design. Biochem J 399(2):199–204

    Article  PubMed  CAS  Google Scholar 

  22. Norman RA, Barry ST, Bate M, Breed J, Colls JG, Ernill RJ, Luke RW, Minshull CA, McAlister MS, McCall EJ, McMiken HH, Paterson DS, Timms D, Tucker JA, Pauptit RA (2004) Crystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor. Structure 12(1):75–84

    Article  PubMed  CAS  Google Scholar 

  23. Nishino I, Spinazzola A, Hirano M (1999) Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283(5402):689–692

    Article  PubMed  CAS  Google Scholar 

  24. Gamez J, Ferreiro C, Accarino ML, Guarner L, Tadesse S, Marti RA, Andreu AL, Raguer N, Cervera C, Hirano M (2002) Phenotypic variability in a Spanish family with MNGIE. Neurology 59(3):455–457

    Article  PubMed  CAS  Google Scholar 

  25. Slama A, Lacroix C, Plante-Bordeneuve V, Lombes A, Conti M, Reimund JM, Auxenfants E, Crenn P, Laforet P, Joannard A, Seguy D, Pillant H, Joly P, Haut S, Messing B, Said G, Legrand A, Guiochon-Mantel A (2005) Thymidine phosphorylase gene mutations in patients with mitochondrial neurogastrointestinal encephalomyopathy syndrome. Mol Genet Metab 84(4):326–331

    Article  PubMed  CAS  Google Scholar 

  26. Yue P, Li Z, Moult J (2005) Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol 353(2):459–473

    Article  PubMed  CAS  Google Scholar 

  27. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17(4):263–270

    Article  PubMed  Google Scholar 

  28. Nishino I, Spinazzola A, Papadimitriou A, Hammans S, Steiner I, Hahn CD, Connolly AM, Verloes A, Guimaraes J, Maillard I, Hamano H, Donati MA, Semrad CE, Russell JA, Andreu AL, Hadjigeorgiou GM, Vu TH, Tadesse S, Nygaard TG, Nonaka I, Hirano I, Bonilla E, Rowland LP, DiMauro S, Hirano M (2000) Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations. Ann Neurol 47(6):792–800

    Article  PubMed  CAS  Google Scholar 

  29. Kocaefe YC, Erdem S, Ozguc M, Tan E (2003) Four novel thymidine phosphorylase gene mutations in mitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE) patients. Eur J Hum Genet 11(1):102–104

    Article  PubMed  CAS  Google Scholar 

  30. Vissing J, Ravn K, Danielsen ER, Duno M, Wibrand F, Wevers RA, Schwartz M (2002) Multiple mtDNA deletions with features of MNGIE. Neurology 59(6):926–929

    Article  PubMed  CAS  Google Scholar 

  31. Martin MA, Blazquez A, Marti R, Bautista J, Lara MC, Cabello A, Campos Y, Belda O, Andreu AL, Arenas J (2004) Lack of gastrointestinal symptoms in a 60-year-old patient with MNGIE. Neurology 63(8):1536–1537

    Article  PubMed  CAS  Google Scholar 

  32. Schupbach WM, Vadday KM, Schaller A, Brekenfeld C, Kappeler L, Benoist JF, Xuan-Huong CN, Burgunder JM, Seibold F, Gallati S, Mattle HP (2007) Mitochondrial neurogastrointestinal encephalomyopathy in three siblings: clinical, genetic and neuroradiological features. J Neurol 254(2):146–153

    Article  PubMed  CAS  Google Scholar 

  33. Monroy N, Macias Kauffer LR, Mutchinick OM (2008) Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) in two Mexican brothers harboring a novel mutation in the ECGF1 gene. Eur J Med Genet 51(3):245–250

    Article  PubMed  Google Scholar 

  34. Poulton J, Hirano M, Spinazzola A, Arenas Hernandez M, Jardel C, Lombes A, Czermin B, Horvath R, Taanman JW, Rotig A, Zeviani M, Fratter C (2009) Collated mutations in mitochondrial DNA (mtDNA) depletion syndrome (excluding the mitochondrial gamma polymerase, POLG1). Biochim Biophys Acta 1792(12):1109–1112

    Article  PubMed  CAS  Google Scholar 

  35. Nalini A, Gayathri N (2011) Mitochondrial neurogastrointestinal encephalopathy in an Indian family with possible manifesting carriers of heterozygous TYMP mutation. J Neurol Sci 309(1–2):131–135

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Wei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, V.W. (2013). Protein Structural Based Analysis for Interpretation of Missense Variants at the Genomics Era: Using MNGIE Disease as an Example. In: Wong, LJ. (eds) Next Generation Sequencing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7001-4_5

Download citation

Publish with us

Policies and ethics