Clinical Molecular Diagnostic Techniques: A Brief Review



The identification and characterization of the genetic basis of disease is often fundamental to diagnosis. Detection of pathogenic mutations in a DNA sample can lead to a diagnosis, possible prognosis, and prospective therapy treatments. Over the years, a variety of molecular biology techniques have been utilized in clinical diagnostic laboratories in the analysis of patient samples. The recent development of next-generation sequencing (NGS) techniques has revolutionized the field of clinical molecular diagnostics. In this chapter, we review the development of molecular diagnostic approaches and some of the most commonly used assays prior to the NGS era. Although PCR-based methods are the most commonly used assays in molecular diagnostics today, a number of caveats must be taken into consideration and are also discussed.


Cystic Fibrosis Restriction Fragment Length Polymorphism Bacterial Artificial Chromosome Clone Polymerase Chain Reaction Fragment Amplification Refractory Mutation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263–273PubMedCrossRefGoogle Scholar
  2. 2.
    Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517PubMedCrossRefGoogle Scholar
  3. 3.
    Rougeon F, Mach B (1976) Stepwise biosynthesis in vitro of globin genes from globin mRNA by DNA polymerase of avian myeloblastosis virus. Proc Natl Acad Sci USA 73(10):3418–3422PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson JT, Wilson LB, deRiel JK, Villa-komaroff L, Efstratiadis A, Forget BG, Weissman SM (1978) Insertion of synthetic copies of human globin genes into bacterial plasmids. Nucleic Acids Res 5(2):563–581PubMedCrossRefGoogle Scholar
  5. 5.
    Kan YW, Dozy AM (1978) Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci USA 75(11):5631–5635PubMedCrossRefGoogle Scholar
  6. 6.
    Woo SL, Lidsky AS, Guttler F, Chandra T, Robson KJ (1983) Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306(5939):151–155PubMedCrossRefGoogle Scholar
  7. 7.
    Farrall M, Law HY, Rodeck CH, Warren R, Stanier P, Super M, Lissens W, Scambler P, Watson E, Wainwright B et al (1986) First-trimester prenatal diagnosis of cystic fibrosis with linked DNA probes. Lancet 1(8495):1402–1405PubMedCrossRefGoogle Scholar
  8. 8.
    Orkin SH, Kazazian HH Jr, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Giardina PJ (1982) Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. Nature 296(5858):627–631PubMedCrossRefGoogle Scholar
  9. 9.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732):1350–1354PubMedCrossRefGoogle Scholar
  10. 10.
    Conner BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB (1983) Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci USA 80(1):278–282PubMedCrossRefGoogle Scholar
  11. 11.
    Orkin SH, Markham AF, Kazazian HH Jr (1983) Direct detection of the common Mediterranean beta-thalassemia gene with synthetic DNA probes. An alternative approach for prenatal diagnosis. J Clin Invest 71(3):775–779PubMedCrossRefGoogle Scholar
  12. 12.
    Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324(6093):163–166. doi: 10.1038/324163a0 PubMedCrossRefGoogle Scholar
  13. 13.
    Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17(7):2503–2516PubMedCrossRefGoogle Scholar
  14. 14.
    Venegas V, Halberg MC (2012) Quantification of mtDNA mutation heteroplasmy (ARMS qPCR). Methods Mol Biol 837:313–326. doi: 10.1007/978-1-61779-504-6_21 PubMedCrossRefGoogle Scholar
  15. 15.
    Jarvius J, Nilsson M, Landegren U (2003) Oligonucleotide ligation assay. Methods Mol Biol 212:215–228PubMedGoogle Scholar
  16. 16.
    Schwartz KM, Pike-Buchanan LL, Muralidharan K, Redman JB, Wilson JA, Jarvis M, Cura MG, Pratt VM (2009) Identification of cystic fibrosis variants by polymerase chain reaction/oligonucleotide ligation assay. J Mol Diagn 11(3):211–215. doi: S1525-1578(10)60230-9 [pii] 10.2353/jmoldx.2009.080106 PubMedCrossRefGoogle Scholar
  17. 17.
    Bathum L, Hansen TS, Horder M, Brosen K (1998) A dual label oligonucleotide ligation assay for detection of the CYP2C19*1, CYP2C19*2, and CYP2C19*3 alleles involving time-resolved fluorometry. Ther Drug Monit 20(1):1–6PubMedCrossRefGoogle Scholar
  18. 18.
    Chakravarty A, Hansen TS, Horder M, Kristensen SR (1997) A fast and robust dual-label nonradioactive oligonucleotide ligation assay for detection of factor V Leiden. Thromb Haemost 78(4):1234–1236PubMedGoogle Scholar
  19. 19.
    Nyren P, Lundin A (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem 151(2):504–509PubMedCrossRefGoogle Scholar
  20. 20.
    Nyren P (1987) Enzymatic method for continuous monitoring of DNA polymerase activity. Anal Biochem 167(2):235–238. doi: 0003-2697(87)90158-8 [pii] PubMedCrossRefGoogle Scholar
  21. 21.
    Hyman ED (1988) A new method of sequencing DNA. Anal Biochem 174(2):423–436PubMedCrossRefGoogle Scholar
  22. 22.
    Ronaghi M, Pettersson B, Uhlen M, Nyren P (1998) PCR-introduced loop structure as primer in DNA sequencing. Biotechniques 25(5):876–878, 880–872, 884Google Scholar
  23. 23.
    Soderback E, Zackrisson AL, Lindblom B, Alderborn A (2005) Determination of CYP2D6 gene copy number by pyrosequencing. Clin Chem 51(3):522–531. doi: clinchem.2004.043182 [pii] 10.1373/clinchem.2004.043182 PubMedCrossRefGoogle Scholar
  24. 24.
    Rose CM, Marsh S, Ameyaw MM, McLeod HL (2003) Pharmacogenetic analysis of clinically relevant genetic polymorphisms. Methods Mol Med 85:225–237. doi: 10.1385/1-59259-380-1:225 PubMedGoogle Scholar
  25. 25.
    Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11(9):1026–1030CrossRefGoogle Scholar
  26. 26.
    Gibson UE, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6(10):995–1001PubMedCrossRefGoogle Scholar
  27. 27.
    Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994PubMedCrossRefGoogle Scholar
  28. 28.
    Myers RM, Lumelsky N, Lerman LS, Maniatis T (1985) Detection of single base substitutions in total genomic DNA. Nature 313(6002):495–498PubMedCrossRefGoogle Scholar
  29. 29.
    Yoshino K, Nishigaki K, Husimi Y (1991) Temperature sweep gel electrophoresis: a simple method to detect point mutations. Nucleic Acids Res 19(11):3153PubMedCrossRefGoogle Scholar
  30. 30.
    Chen TJ, Boles RG, Wong LJ (1999) Detection of mitochondrial DNA mutations by temporal temperature gradient gel electrophoresis. Clin Chem 45(8 Pt 1):1162–1167PubMedGoogle Scholar
  31. 31.
    Alper OM, Wong LJ, Young S, Pearl M, Graham S, Sherwin J, Nussbaum E, Nielson D, Platzker A, Davies Z, Lieberthal A, Chin T, Shay G, Hardy K, Kharrazi M (2004) Identification of novel and rare mutations in California Hispanic and African American cystic fibrosis patients. Hum Mutat 24(4):353. doi: 10.1002/humu.9281 PubMedCrossRefGoogle Scholar
  32. 32.
    Tan DJ, Bai RK, Wong LJ (2002) Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62(4):972–976PubMedGoogle Scholar
  33. 33.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86(8):2766–2770PubMedCrossRefGoogle Scholar
  34. 34.
    White MB, Carvalho M, Derse D, O’Brien SJ, Dean M (1992) Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12(2):301–306. doi: 0888-7543(92)90377-5 [pii] PubMedCrossRefGoogle Scholar
  35. 35.
    Makino R, Yazyu H, Kishimoto Y, Sekiya T, Hayashi K (1992) F-SSCP: fluorescence-based polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl 2(1):10–13PubMedCrossRefGoogle Scholar
  36. 36.
    Wang YH, Barker P, Griffith J (1992) Visualization of diagnostic heteroduplex DNAs from cystic fibrosis deletion heterozygotes provides an estimate of the kinking of DNA by bulged bases. J Biol Chem 267(7):4911–4915PubMedGoogle Scholar
  37. 37.
    Suzuki Y, Orita M, Shiraishi M, Hayashi K, Sekiya T (1990) Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 5(7):1037–1043PubMedGoogle Scholar
  38. 38.
    Dockhorn-Dworniczak B, Dworniczak B, Brommelkamp L, Bulles J, Horst J, Bocker WW (1991) Non-isotopic detection of single strand conformation polymorphism (PCR-SSCP): a rapid and sensitive technique in diagnosis of phenylketonuria. Nucleic Acids Res 19(9):2500PubMedCrossRefGoogle Scholar
  39. 39.
    Hogg A, Onadim Z, Baird PN, Cowell JK (1992) Detection of heterozygous mutations in the RB1 gene in retinoblastoma patients using single-strand conformation polymorphism analysis and polymerase chain reaction sequencing. Oncogene 7(7):1445–1451PubMedGoogle Scholar
  40. 40.
    Underhill PA, Jin L, Lin AA, Mehdi SQ, Jenkins T, Vollrath D, Davis RW, Cavalli-Sforza LL, Oefner PJ (1997) Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res 7(10):996–1005PubMedGoogle Scholar
  41. 41.
    Den Dunnen JT, Van Ommen GJ (1999) The protein truncation test: a review. Hum Mutat 14(2):95–102. doi: 10.1002/(SICI)1098-1004(1999)14:2<95::AID-HUMU1>3.0.CO;2-G [pii] 10.1002/(SICI)1098-1004(1999)14:2<95::AID-HUMU1>3.0.CO;2-G CrossRefGoogle Scholar
  42. 42.
    Roest PA, Roberts RG, van der Tuijn AC, Heikoop JC, van Ommen GJ, den Dunnen JT (1993) Protein truncation test (PTT) to rapidly screen the DMD gene for translation terminating mutations. Neuromuscul Disord 3(5–6):391–394. doi: 0960-8966(93)90083-V [pii] PubMedCrossRefGoogle Scholar
  43. 43.
    Friedl W, Aretz S (2005) Familial adenomatous polyposis: experience from a study of 1164 unrelated german polyposis patients. Hered Cancer Clin Pract 3(3):95–114. doi: 1897-4287-3-3-95 [pii] 10.1186/1897-4287-3-3-95 PubMedCrossRefGoogle Scholar
  44. 44.
    Hogervorst FB, Cornelis RS, Bout M, van Vliet M, Oosterwijk JC, Olmer R, Bakker B, Klijn JG, Vasen HF, Meijers-Heijboer H et al (1995) Rapid detection of BRCA1 mutations by the protein truncation test. Nat Genet 10(2):208–212. doi: 10.1038/ng0695-208 PubMedCrossRefGoogle Scholar
  45. 45.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467PubMedCrossRefGoogle Scholar
  46. 46.
    Filippi G, Rinaldi A, Archidiacono N, Rocchi M, Balazs I, Siniscalco M (1983) Brief report: linkage between G6PD and fragile-X syndrome. Am J Med Genet 15(1):113–119. doi: 10.1002/ajmg.1320150115 PubMedCrossRefGoogle Scholar
  47. 47.
    Mulligan LM, Phillips MA, Forster-Gibson CJ, Beckett J, Partington MW, Simpson NE, Holden JJ, White BN (1985) Genetic mapping of DNA segments relative to the locus for the fragile-X syndrome at Xq27.3. Am J Hum Genet 37(3):463–472PubMedGoogle Scholar
  48. 48.
    Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas MF, Mandel JL (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252(5010):1097–1102PubMedCrossRefGoogle Scholar
  49. 49.
    Richards RI, Holman K, Kozman H, Kremer E, Lynch M, Pritchard M, Yu S, Mulley J, Sutherland GR (1991) Fragile X syndrome: genetic localisation by linkage mapping of two microsatellite repeats FRAXAC1 and FRAXAC2 which immediately flank the fragile site. J Med Genet 28(12):818–823PubMedCrossRefGoogle Scholar
  50. 50.
    Yu S, Pritchard M, Kremer E, Lynch M, Nancarrow J, Baker E, Holman K, Mulley J, Warren S, Schlessinger D et al (1991) Fragile X genotype characterized by an unstable region of DNA. Science 252(5009):1179–1181. doi: 252/5009/1179 [pii] 10.1126/science.252.5009.1179 PubMedCrossRefGoogle Scholar
  51. 51.
    Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57PubMedCrossRefGoogle Scholar
  52. 52.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821PubMedCrossRefGoogle Scholar
  53. 53.
    Landsverk ML, Wang J, Schmitt ES, Pursley AN, Wong LJ (2011) Utilization of targeted array comparative genomic hybridization, MitoMet, in prenatal diagnosis of metabolic disorders. Mol Genet Metab 103(2):148–152. doi: S1096-7192(11)00064-3 [pii] 10.1016/j.ymgme.2011.03.003 PubMedCrossRefGoogle Scholar
  54. 54.
    Wang J, Zhan H, Li FY, Pursley AN, Schmitt ES, Wong LJ (2012) Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab 106(2):221–230. doi: S1096-7192(12)00106-0 [pii] 10.1016/j.ymgme.2012.03.005 PubMedCrossRefGoogle Scholar
  55. 55.
    Bejjani BA, Saleki R, Ballif BC, Rorem EA, Sundin K, Theisen A, Kashork CD, Shaffer LG (2005) Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 134(3):259–267. doi: 10.1002/ajmg.a.30621 PubMedGoogle Scholar
  56. 56.
    Stankiewicz P, Beaudet al (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17(3):182–192. doi: S0959-437X(07)00074-3 [pii] 10.1016/j.gde.2007.04.009 PubMedCrossRefGoogle Scholar
  57. 57.
    Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082PubMedCrossRefGoogle Scholar
  58. 58.
    Landsverk ML, Douglas GV, Tang S, Zhang VW, Wang GL, Wang J, Wong LJ (2012) Diagnostic approaches to apparent homozygosity. Genet Med. doi: 10.1038/gim.2012.58 gim201258 [pii] Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Medical Genetics Laboratories, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations