A Glimpse of Young Tableaux

Part of the Undergraduate Texts in Mathematics book series (UTM)


We defined in Chap. 6 Young’s lattice Y, the poset of all partitions of all nonnegative integers, ordered by containment of their Young diagrams.


Standard Young Tableaux Young Diagram Walk Counts Graded Poset Hasse Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 5.
    E.A. Beem, Craige and Irene Schensted don’t have a car in the world, in Maine Times (1982), pp. 20–21Google Scholar
  2. 6.
    E.A. Bender, D.E. Knuth, Enumeration of plane partitions. J. Comb. Theor. 13, 40–54 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 36.
    S. Fomin, Duality of graded graphs. J. Algebr. Combin. 3, 357–404 (1994)zbMATHCrossRefGoogle Scholar
  4. 37.
    S. Fomin, Schensted algorithms for dual graded graphs. J. Algebr. Combin. 4, 5–45 (1995)zbMATHCrossRefGoogle Scholar
  5. 38.
    J.S. Frame, G. de B. Robinson, R.M. Thrall, The hook graphs of S n. Can. J. Math. 6 316–324 (1954)Google Scholar
  6. 39.
    D.S. Franzblau, D. Zeilberger, A bijective proof of the hook-length formula. J. Algorithms 3, 317–343 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 41.
    F.G. Frobenius, Über die Charaktere der symmetrischen Gruppe, in Sitzungsber. Kön. Preuss. Akad. Wissen. Berlin (1900), pp. 516–534; Gesammelte Abh. III, ed. by J.-P. Serre (Springer, Berlin, 1968), pp. 148–166Google Scholar
  8. 42.
    W.E. Fulton, Young Tableaux. Student Texts, vol. 35 (London Mathematical Society/Cambridge University Press, Cambridge, 1997)Google Scholar
  9. 48.
    C. Greene, A. Nijenhuis, H.S. Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape. Adv. Math. 31, 104–109 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 57.
    A.P. Hillman, R.M. Grassl, Reverse plane partitions and tableaux hook numbers. J. Comb. Theor. A 21, 216–221 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 64.
    C. Krattenthaler, Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted. Electronic J. Combin. 2, R13, 9 pp. (1995)Google Scholar
  12. 65.
    D.E. Knuth, Permutations, matrices, and generalized Young tableaux. Pac. J. Math. 34, 709–727 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 73.
    P.A. MacMahon, Memoir on the theory of the partitions of numbers — Part I. Philos. Trans. R. Soc. Lond. A 187, 619–673 (1897); Collected Works, vol. 1, ed. by G.E. Andrews (MIT, Cambridge, 1978), pp. 1026–1080Google Scholar
  14. 74.
    P.A. MacMahon, Memoir on the theory of the partitions of numbers — Part IV. Philos. Trans. R. Soc. Lond. A 209, 153–175 (1909); Collected Works, vol. 1, ed. by G.E. Andrews (MIT, Cambridge, 1978), pp. 1292–1314Google Scholar
  15. 75.
    P.A. MacMahon, Combinatory Analysis, vols. 1, 2 (Cambridge University Press, Cambridge, 1915/1916); Reprinted in one volume by Chelsea, New York, 1960Google Scholar
  16. 80.
    J.-C. Novelli, I. Pak, A.V. Stoyanovskii, A new proof of the hook-length formula. Discrete Math. Theor. Comput. Sci.  1, 053–067 (1997)MathSciNetGoogle Scholar
  17. 93.
    J.B. Remmel, Bijective proofs of formulae for the number of standard Young tableaux. Linear Multilinear Algebra 11, 45–100 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 94.
    G. de B. Robinson, On the representations of S n. Am. J. Math. 60, 745–760 (1938)Google Scholar
  19. 96.
    B.E. Sagan, The Symmetric Group, 2nd edn. (Springer, New York, 2001)zbMATHCrossRefGoogle Scholar
  20. 97.
    C.E. Schensted, Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 104.
    R. Stanley, Differential posets. J. Am. Math. Soc. 1, 919–961 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 106.
    R. Stanley, Variations on differential posets, in Invariant Theory and Tableaux, ed. by D. Stanton. The IMA Volumes in Mathematics and Its Applications, vol. 19 (Springer, New York, 1990), pp. 145–165Google Scholar
  23. 107.
    R. Stanley, Enumerative Combinatorics, vol. 1, 2nd edn. (Cambridge University Press, Cambridge, 2012)Google Scholar
  24. 108.
    R. Stanley, Enumerative Combinatorics, vol. 2 (Cambridge University Press, New York, 1999)CrossRefGoogle Scholar
  25. 120.
    M.A.A. van Leeuwen, The Robinson-Schensted and Schützenberger algorithms, Part 1: new combinatorial proofs, Preprint no. AM-R9208 1992, Centrum voor Wiskunde en Informatica, 1992Google Scholar
  26. 122.
    A. Young, Qualitative substitutional analysis (third paper). Proc. Lond. Math. Soc. (2) 28, 255–292 (1927)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations