Enumeration Under Group Action

Part of the Undergraduate Texts in Mathematics book series (UTM)


In Chaps. 5 and 6 we considered the quotient poset B n G, where G is a subgroup of the symmetric group \(\mathfrak{S}_{n}\). If p i is the number of elements of rank i of this poset, then the sequence p 0, p 1, , p n is rank-symmetric and rank-unimodal.


Quotient Poset Cycle Index Polynomial Edge Multiplicities Cycle Indicator Rank-generating Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 14.
    W. Burnside, Theory of Groups of Finite Order (Cambridge University Press, Cambridge, 1897)zbMATHGoogle Scholar
  2. 15.
    W. Burnside, Theory of Groups of Finite Order, 2nd edn. (Cambridge University Press, Cambridge, 1911); Reprinted by Dover, New York, 1955Google Scholar
  3. 18.
    A.L. Cauchy, Mémoire sur diverses propriétés remarquables des substitutions régulaires ou irrégulaires, et des systèmes de substitutions conjuguées (suite). C. R. Acad. Sci. Paris 21, 972–987 (1845); Oeuvres Ser. 1 9, 371–387Google Scholar
  4. 25.
    N.G. de Bruijn, Pólya’s theory of counting, in Applied Combinatorial Mathematics, ed. by E.F. Beckenbach (Wiley, New York, 1964); Reprinted by Krieger, Malabar, FL, 1981Google Scholar
  5. 40.
    F.G. Frobenius, Über die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul. J. Reine Angew. Math. (Crelle’s J.) 101, 273–299 (1887); Reprinted in Gesammelte Abhandlungen, vol. 2 (Springer, Heidelberg, 1988), pp. 304–330Google Scholar
  6. 41.
    F.G. Frobenius, Über die Charaktere der symmetrischen Gruppe, in Sitzungsber. Kön. Preuss. Akad. Wissen. Berlin (1900), pp. 516–534; Gesammelte Abh. III, ed. by J.-P. Serre (Springer, Berlin, 1968), pp. 148–166Google Scholar
  7. 49.
    J.I. Hall, E.M. Palmer, R.W. Robinson, Redfield’s lost paper in a modern context. J. Graph Theor. 8, 225–240 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 50.
    F. Harary, E.M. Palmer, Graphical Enumeration (Academic, New York, 1973)zbMATHGoogle Scholar
  9. 51.
    F. Harary, R.W. Robinson, The rediscovery of Redfield’s papers. J. Graph Theory 8, 191–192 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 60.
    A. Hurwitz, Über die Anzahl der Riemannschen Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 55, 53–66 (1902)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 69.
    E.K. Lloyd, J. Howard Redfield: 1879–1944. J. Graph Theor. 8, 195–203 (1984)zbMATHCrossRefGoogle Scholar
  12. 79.
    P.M. Neumann, A lemma that is not Burnside’s. Math. Sci. 4, 133–141 (1979)MathSciNetGoogle Scholar
  13. 84.
    G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145–254 (1937)CrossRefGoogle Scholar
  14. 85.
    G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Springer, New York, 1987)CrossRefGoogle Scholar
  15. 91.
    J.H. Redfield, The theory of group reduced distributions. Am. J. Math. 49, 433–455 (1927)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 92.
    J.H. Redfield, Enumeration by frame group and range groups. J. Graph Theor. 8, 205–223 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 108.
    R. Stanley, Enumerative Combinatorics, vol. 2 (Cambridge University Press, New York, 1999)CrossRefGoogle Scholar
  18. 121.
    E.M. Wright, Burnside’s lemma: a historical note. J. Comb. Theor. B 30, 89–90 (1981)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations