Cubes and the Radon Transform

Part of the Undergraduate Texts in Mathematics book series (UTM)


Let us now consider a more interesting example of a graph G, one whose eigenvalues have come up in a variety of applications. Let \(\mathbb{Z}_{2}\) denote the cyclic group of order 2, with elements 0 and 1 and group operation being addition modulo 2.


Finite Group Cyclic Group Hamiltonian Cycle Irreducible Character Closed Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 9.
    E.D. Bolker, The finite Radon transform, in Integral Geometry, Brunswick, Maine, 1984. Contemporary Mathematics, vol. 63 (American Mathematical Society, Providence, 1987), pp. 27–50Google Scholar
  2. 27.
    M.R. DeDeo, E. Velasquez, The Radon transform on \(\mathbb{Z}_{n}^{k}\). SIAM J. Discrete Math. 18, 472–478 (electronic) (2004/2005)Google Scholar
  3. 28.
    P. Diaconis, R.L. Graham, The Radon transform on \(\mathbb{Z}_{2}^{k}\). Pac. J. Math. 118, 323–345 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 54.
    T.W. Hawkins, The origins of the theory of group characters. Arch. Hist. Exact Sci. 7, 142–170 (1970/1971)Google Scholar
  5. 56.
    T.W. Hawkins, New light on Frobenius’ creation of the theory of group characters. Arch. Hist. Exact Sci. 12, 217–243 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 67.
    J.P.S. Kung, Radon transforms in combinatorics and lattice theory, in Combinatorics and Ordered Sets, Arcata, CA, 1985. Contemporary Mathematics, vol. 57 (American Mathematical Society, Providence, 1986), pp. 33–74Google Scholar
  7. 90.
    J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig 69, 262–277 (1917); Translation by P.C. Parks, On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5, 170–176 (1986)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations