Skip to main content

The Evans Function for Boundary-Value Problems

  • Chapter
  • First Online:
  • 3173 Accesses

Part of the book series: Applied Mathematical Sciences ((AMS,volume 185))

Abstract

Previously we gathered information about a point spectrum either perturbatively, as in Chapter 6, or in cases where the linear operator has special structure, as arises from symmetries (Chapter 4.2) and in Hamiltonian systems (Chapter 7). In this chapter we construct the Evans function, an analytic function of the spectral parameter with the property that its zeros correspond to eigenvalues with the order of the zero equal to the algebraic multiplicity of the eigenvalue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Barker, P. Noble, L. Rodrigues, and K. Zumbrun. Stability of periodic Kuramoto–Sivashinsky waves. Appl. Math. Lett., 25(5):824–829, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bronski and Z. Rapti. Modulational instability for nonlinear Schrödinger equations with a periodic potential. Dyn. Part. Diff. Eq., 2(4):335–355, 2005.

    MathSciNet  MATH  Google Scholar 

  3. J. Evans. Nerve axon equations, I: Linear approximations. Indiana U. Math. J., 21:877–955, 1972a.

    Article  MATH  Google Scholar 

  4. J. Evans. Nerve axon equations, II: Stability at rest. Indiana U. Math. J., 22:75–90, 1972b.

    Article  MATH  Google Scholar 

  5. J. Evans. Nerve axon equations, III: Stability of the nerve impulse. Indiana U. Math. J., 22:577–594, 1972c.

    Article  MATH  Google Scholar 

  6. J. Evans. Nerve axon equations, IV: The stable and unstable impulse. Indiana U. Math. J., 24:1169–1190, 1975.

    Article  MATH  Google Scholar 

  7. F. Finkel, A. González-López, and M. Rodríguez. A new algebraization of the Lamé equation. J. Phys. A: Math. Gen., 33:1519–1542, 2000.

    Article  MATH  Google Scholar 

  8. T. Gallay and M. Hǎrǎguş. Stability of small periodic waves for the nonlinear Schrödinger equation. J. Diff. Eq., 234:544–581, 2007b.

    Article  MATH  Google Scholar 

  9. R. Gardner. On the structure of the spectra of periodic travelling waves. J. Math. Pures Appl., 72:415–439, 1993.

    MathSciNet  MATH  Google Scholar 

  10. R. Gardner and C.K.R.T. Jones. A stability index for steady-state solutions of boundary-value problems for parabolic systems. J. Diff. Eq., 91:181–203, 1991a.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Haberman. Applied Partial Differential Equations with Fourier Series and Bounday Value Problems. Pearson, New York, fourth edition, 2004.

    Google Scholar 

  12. M. Hǎrǎguş. Stability of periodic waves for the generalized BBM equation. Rev. Roumaine Maths. Pures Appl., 53:445–463, 2008.

    Google Scholar 

  13. M. Hǎrǎguş. Transverse spectral stability of small periodic traveling waves for the KP equation. Stud. Appl. Math., 126:157–185, 2011.

    Article  MathSciNet  Google Scholar 

  14. M. Hǎrǎguş, E. Lombardi, and A. Scheel. Spectral stability of wave trains in the kawahara equation. J. Math. Fluid Mech., 8:482–509, 2006.

    Article  MathSciNet  Google Scholar 

  15. T. Ivey and S. Lafortune. Spectral stability analysis for periodic traveling wave solutions of NLS and CGL perturbations. Physica D, 237:1750–1772, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  16. C.K.R.T. Jones. Stability of the travelling wave solutions of the Fitzhugh–Nagumo system. Trans. AMS, 286(2):431–469, 1984.

    Article  MATH  Google Scholar 

  17. A. Markushevich. Theory of Functions. Chelsea Publishing, New York, 1985.

    Google Scholar 

  18. L. Meirovitch. Analytical Methods in Vibrations. Macmillan Series in Applied Mechanics, Macmillan, New York, 1967.

    MATH  Google Scholar 

  19. R. Pego and M. Weinstein. Eigenvalues, and instabilities of solitary waves. Phil. Trans. R. Soc. Lond. A, 340:47–94, 1992.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kapitula, T., Promislow, K. (2013). The Evans Function for Boundary-Value Problems. In: Spectral and Dynamical Stability of Nonlinear Waves. Applied Mathematical Sciences, vol 185. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6995-7_8

Download citation

Publish with us

Policies and ethics