Skip to main content

Point Spectrum: Reduction to Finite-Rank Eigenvalue Problems

  • Chapter
  • First Online:
Spectral and Dynamical Stability of Nonlinear Waves

Part of the book series: Applied Mathematical Sciences ((AMS,volume 185))

  • 3196 Accesses

Abstract

The word bifurcation refers to changes in the number and stability of equilibria supported by a governing system as its parameters are varied. The classical bifurcation problem begins with an analysis of the point spectrum of the linearized operator associated with the equilibria under investigation. In this chapter we investigate finite-rank bifurcations for which a finite number of point eigenvalues cross the imaginary axis, either transversely or more degenerately, as the system parameters are varied. In particular, we derive the perturbative motion of such point spectra. This analysis is most informative in those cases for which the associated linearized operator initially has purely imaginary eigenvalues, and a small change in parameters moves the eigenvalues decisively off the imaginary axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Angulo. Nonlinear stability of periodic travelling wave solutions to the Schrödinger and the modified Korteweg–de Vries equations. J. Diff. Eq., 235:1–30, 2007.

    Article  MATH  Google Scholar 

  2. J. Angulo and J. Quintero. Existence and orbital stability of cnoidal waves for a 1D Boussinesq equation. Int. J. Math. Math. Sci., 2007:52020, 2007.

    Article  MathSciNet  Google Scholar 

  3. I. Aranson and L. Kramer. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys., 74(1):99–143, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bronski and M. Johnson. The modulational instability for a generalized KdV equation. Arch. Rat. Mech. Anal., 197(2):357–400, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bronski, M. Johnson, and T. Kapitula. An index theorem for the stability of periodic traveling waves of KdV type. Proc. Roy. Soc. Edinburgh: Section A, 141(6):1141–1173, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Deconinck and T. Kapitula. On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. submitted.

    Google Scholar 

  7. B. Deconinck and M. Nivala. The stability analysis of the periodic traveling wave solutions of the mkdv equation. Stud. Appl. Math., 126:17–48, 2010.

    Article  MathSciNet  Google Scholar 

  8. T. Gallay and M. Hǎrǎguş. Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Diff. Eqns., 19:825–865, 2007a.

    Article  MATH  Google Scholar 

  9. T. Gallay and M. Hǎrǎguş. Stability of small periodic waves for the nonlinear Schrödinger equation. J. Diff. Eq., 234:544–581, 2007b.

    Article  MATH  Google Scholar 

  10. M. Johnson. Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg–de Vries equation. SIAM J. Math. Anal., 41(5): 1921–1947, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Kapitula. The Evans function and generalized Melnikov integrals. SIAM J. Math. Anal., 30(2):273–297, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  13. J. Pava. Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg–de Vries equations. J. Diff. Eq., 235(1):1–30, 2007.

    Article  MATH  Google Scholar 

  14. J. Pava, J. Bona, and M. Scialom. Stability of cnoidal waves. Adv. Diff. Eq., 11(12):1321–1374, 2006.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kapitula, T., Promislow, K. (2013). Point Spectrum: Reduction to Finite-Rank Eigenvalue Problems. In: Spectral and Dynamical Stability of Nonlinear Waves. Applied Mathematical Sciences, vol 185. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6995-7_6

Download citation

Publish with us

Policies and ethics