Skip to main content

The Evans Function for nth-Order Operators on the Real Line

  • Chapter
  • First Online:
Spectral and Dynamical Stability of Nonlinear Waves

Part of the book series: Applied Mathematical Sciences ((AMS,volume 185))

  • 3173 Accesses

Abstract

The primary goal of this chapter is the construction of the Evans function for eigenvalue problems associated with nth-order, exponentially asymptotic linear operators acting on L2(R). The construction, through the Jost solutions, is distinguished from the construction for second-order operators by the fact that the matrix eigenvalues and associated eigenvectors for the nth-order problem may not be analytic in the natural domain of the Evans function. Moreover, while it is relatively easy to determine the essential spectrum for these problems, the matrix eigenvalues and the absolute spectrum do not generally have an explicit representation. We sidestep these issues via an analytic extension of the stable and unstable spaces of the asymptotic matrix which leads to the construction of Jost matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Alexander and C.K.R.T. Jones. Existence and stability of asymptotically oscillatory triple pulses. Z. Angew. Math. Phys., 44:189–200, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Alexander and C.K.R.T. Jones. Existence and stability of asymptotically oscillatory double pulses. J. Reine Angew. Math., 446:49–79, 1994.

    MathSciNet  MATH  Google Scholar 

  3. J. Alexander, R. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability of travelling waves. J. Reine Angew. Math., 410: 167–212, 1990.

    MathSciNet  MATH  Google Scholar 

  4. J. Alexander, M. Grillakis, C.K.R.T. Jones, and B. Sandstede. Stability of pulses on optical fibers with phase-sensitive amplifiers. Z. Angew. Math. Phys., 48(2):175–192, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Aparicio, S. Malham, and M. Oliver. Numerical evaluation of the Evans function by Magnus integration. BIT, 45:219–258, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Arnold. Stability theory for periodic pulse train solutions of the nonlinear Schrödinger equation. IMA J. Appl. Math., 52:123–140, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Benzoni-Gavage, D. Serre, and K. Zumbrun. Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal., 32(5):929–962, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Deconinck, D. Pelinovsky, and J. Carter. Transverse instabilities of deep-water solitary waves. Proc. Royal Soc. A, 462:2039–2061, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Doelman, R. Gardner, and T. Kaper. Stability analysis of singular patterns in the 1-D Gray–Scott model I: a matched asymptotics approach. Physica D, 122(1–4):1–36, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Doelman, R. Gardner, and T. Kaper. A stability index analysis of the 1-D Gray–Scott model. Memoirs AMS, 155(737), 2002.

    Google Scholar 

  11. A. Doelman, T. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Drazin and R. Johnson. Solitons: An Introduction. Cambridge University Press, Cambridge, 1989.

    Book  MATH  Google Scholar 

  13. F. Gesztesy, Y. Laushkin, and K. Makarov. Evans functions, Jost functions, and Fredholm determinants. Arch. Rat. Mech. Anal., 186:361–421, 2007.

    Article  MATH  Google Scholar 

  14. F. Gesztesy, Y. Latushkin, and K. Zumbrun. Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves. J. Math. Pures Appl., 9(2):160–200, 2008.

    MathSciNet  Google Scholar 

  15. J. Humpherys and K. Zumbrun. Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys., 53(1):20–34, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Humpherys and K. Zumbrun. An efficient shooting algorithm for Evans function calculations in large systems. Physica D, 220(2):116–126, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Humpherys and K. Zumbrun. Efficient numerical stability analysis of detonation waves in ZND. Quart. Appl. Math., 70(4):685–703, 2012.

    Article  MATH  Google Scholar 

  18. J. Humpherys, B. Sandstede, and K. Zumbrun. Efficient computation of analytic bases in Evans function analysis of large systems. Numer. Math., 103(4):631–642, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Ivey and S. Lafortune. Spectral stability analysis for periodic traveling wave solutions of NLS and CGL perturbations. Physica D, 237:1750–1772, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Kapitula. Existence and stability of singular heteroclinic orbits for the Ginzburg–Landau equation. Nonlinearity, 9(3):669–686, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kapitula. On the stability of N-solitons in integrable systems. Nonlinearity, 20(4):879–907, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity, 13(1):77–112, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Kapitula and B. Sandstede. Edge bifurcations for near-integrable systems via Evans function techniques. SIAM J. Math. Anal., 33(5):1117–1143, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Kapitula and B. Sandstede. Eigenvalues and resonances using the Evans function. Disc. Cont. Dyn. Sys., 10(4):857–869, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Kapitula, J. N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U. Math. J., 53(4):1095–1126, 2004b.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  27. D. Kaup. Perturbation theory for solitons in optical fibers. Phys. Rev. A, 42 (9):5689–5694, 1990.

    Article  MathSciNet  Google Scholar 

  28. Y. Latushkin and A. Sukhtavey. The algebraic multiplicity of eigenvalues and the Evans function revisited. Math. Model. Nat. Phenom., 5:269–292, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Latushkin and A. Sukhtayev. The Evans function and the Weyl–Titchmarsh function. Disc. Cont. Dyn. Sys. Ser. S, 5:939–970, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Latushkin and Y. Tomilov. Fredholm differential operators with unbounded coefficients. J. Diff. Eq., 208:388–429, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Latushkin, A. Pogan, and R. Schnaubelt. Dichotomy and Fredholm properties of evolution equations. J. Operator Theory, 58:387–414, 2007.

    MathSciNet  MATH  Google Scholar 

  32. N. Lebedev. Special Functions and Their Applications. Dover, New York, 1972.

    MATH  Google Scholar 

  33. V. Ledoux, S. Malham, J. Niesen, and V. Thummler. Computing stability of multi-dimensional travelling waves. SIAM J. Appl. Dyn. Sys., 8(1): 480–507, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  34. V. Ledoux, S. Malham, and V. Thümmler. Grassmannian spectral shooting. Math. Comp., 79:1585–1619, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Li and K. Promislow. Structural stability of non–ground-state traveling waves of coupled nonlinear Schrödinger equations. Physica D, 124(1–3): 137–165, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Li and K. Promislow. The mechanism of the polarization mode instability in birefringent fiber optics. SIAM J. Math. Anal., 31(6):1351–1373, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Malham and J. Niesen. Evaluating the Evans function: order reduction in numerical methods. Math. Comp., 77:159–179, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Oh and B. Sandstede. Evans function for periodic waves on infinite cylindrical domains. J. Diff. Eq., 248(3):544–555, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Oh and K. Zumbrun. Low-frequency stability analysis of periodic traveling-wave solutions of viscous conservation laws in several dimensions. J. Anal. Appl., 25(1):1–21, 2006.

    MathSciNet  MATH  Google Scholar 

  40. R. Pego and M. Weinstein. Eigenvalues, and instabilities of solitary waves. Phil. Trans. R. Soc. Lond. A, 340:47–94, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Pelinovsky and P. Kevrekidis. Dark solitons in external potentials. Z. Angew. Math. Phys., 59:559–599, 2008a.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Plaza and K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Disc. Cont. Dyn. Syst., 10(4):885–924, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Disc. Cont. Dyn. Sys. A, 4:925–940, 2004.

    Article  Google Scholar 

  44. B. Sandstede. Stability of multiple-pulse solutions. Trans. Amer. Math. Soc., 350:429–472, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Sandstede and A. Scheel. Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D, 145:233–277, 2000a.

    Article  MathSciNet  MATH  Google Scholar 

  46. B. Sandstede and A. Scheel. Gluing unstable fronts and backs together can produce stable pulses. Nonlinearity, 13:1465–1482, 2000b.

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Sandstede and A. Scheel. On the stability of travelling waves with large spatial period. J. Diff. Eq., 172:134–188, 2001a.

    Article  MathSciNet  MATH  Google Scholar 

  48. B. Sandstede and A. Scheel. Evans function and blow-up methods in critical eigenvalue problems. Disc. Cont. Dyn. Sys., 10:941–964, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  49. B. Sandstede, J. Alexander, and C.K.R.T. Jones. Existence and stability of n-pulses on optical fibers with phase-sensitive amplifiers. Physica D, 106(1&2): 167–206, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Terman. Stability of planar wave solutions to a combustion model. SIAM J. Math. Anal., 21(5):1139–1171, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Yew. Stability analysis of multipulses in nonlinearly coupled Schrödinger equations. Indiana U. Math. J., 49(3):1079–1124, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Yew, B. Sandstede, and C.K.R.T. Jones. Instability of multiple pulses in coupled nonlinear Schrödinger equations. Phys. Rev. E, 61(5):5886–5892, 2000.

    Article  MathSciNet  Google Scholar 

  53. L. Zhang. On stability of traveling wave solutions in synaptically coupled neuronal networks. Diff. Int. Eq., 16:513–536, 2003.

    MATH  Google Scholar 

  54. L. Zhang. Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks. J. Diff. Eq., 197:162–196, 2004.

    Article  MATH  Google Scholar 

  55. L. Zhang. Evans functions and bifurcations of standing wave solutions in delayed synaptically coupled neuronal networks. J. Appl. Anal. Comp., 2: 213–240, 2012.

    Google Scholar 

  56. K. Zumbrun. Numerical error analysis for Evans function computations: a numerical gap lemma, centerd-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization. arXiv:0904.0268v2, 2009.

    Google Scholar 

  57. K. Zumbrun. Stability of detonation profiles in the ZND limit. Arch. Rat. Mech. Anal., 200(1):141–182, 2011c.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kapitula, T., Promislow, K. (2013). The Evans Function for nth-Order Operators on the Real Line. In: Spectral and Dynamical Stability of Nonlinear Waves. Applied Mathematical Sciences, vol 185. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6995-7_10

Download citation

Publish with us

Policies and ethics