Advertisement

Normal Form Theory

  • Shangjiang Guo
  • Jianhong Wu
Chapter
  • 2.4k Downloads
Part of the Applied Mathematical Sciences book series (AMS, volume 184)

Abstract

Normal forms theory provides one of the most powerful tools in the study of nonlinear dynamical systems, in particular in stability and bifurcation analysis. In the context of finite-dimensional ordinary differential equations (ODEs), this theory can be traced back as far as Euler. However, Poincaré [247] and Birkhoff [33] were the first to bring forth the theory in a more definite form.

Keywords

Normal Form Hopf Bifurcation Center Manifold Nonresonance Condition Normal Form Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 21.
    Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  2. 22.
    Ashkenazi, M., Chow, S.N.: Normal forms near critical points for differential equations and maps. IEEE Trans. Circuits Syst. 35, 850–862 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 33.
    Birkhoff, G.D.: Dynamical Systems. AMS, Providence (1927)zbMATHGoogle Scholar
  4. 41.
    Bredon, G.E.: Introduction to Compact Transformation Groups. Academic, New York (1972)zbMATHGoogle Scholar
  5. 48.
    Bruno, A.D.: Local Method of Nonlinear Analysis of Differential Equations (in Russian). Izdatel’stvo Nauka, Moscow (1979)Google Scholar
  6. 56.
    Chen, G., Della Dora, J.: Rational normal form for dynamical systems via Carleman linearization. In: Proceeding of ISSAC-99, pp. 165–172. ACM Press–Addison Wesley, Vancouver (1999)Google Scholar
  7. 57.
    Chen, G., Della Dora, J.: Further reduction of normal forms for dynamical systems. J. Differ. Equat. 166, 79–106 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 65.
    Chow, S.N., Hale, J.: Methods of Bifurcation Theory. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  9. 68.
    Chow, S.N., Mallet-Paret, J.: Integral averaging and bifurcation. J. Differ. Equat. 26, 112–159 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 77.
    Cushman, R., Sanders, J.A.: Nilpotent normal forms and representation theory of sl(2, R). In: Golubitsky, M., Guckenheimer, J. (eds.) Multiparameter Bifurcation Theory. Contemporary Mathematics, vol. 56, pp. 31–51. AMS, Providence (1986)CrossRefGoogle Scholar
  11. 78.
    Cushman, R., Sanders, J.A.: Splitting algorithm for nilpotent normal forms. Dynam. Stabil. Syst. 2(3–4), 235–246 (1988)MathSciNetCrossRefGoogle Scholar
  12. 79.
    Cushman, R., Sanders, J.A.: A survey of invariant theory applied to normal forms of vector fields with nilpotent linear part. In: Proceedings of Invariant Theory, pp. 82–106. Springer, New York (1990)Google Scholar
  13. 87.
    Elphick, C., Tirapegui, E., Brachet, M.E., Coullet, P., Iooss, G.: A simple global characterization for normal forms of singular vector fields. Phys. D 29, 95–127 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 91.
    Faria, T., Magalhães, L.T.: Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equat. 122(2), 181–200 (1995)CrossRefzbMATHGoogle Scholar
  15. 92.
    Faria, T., Magalhães, L.T.: Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity. J. Differ. Equat. 122(2), 201–224 (1995)CrossRefzbMATHGoogle Scholar
  16. 118.
    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. 2. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  17. 125.
    Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations: Dynamical System and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefGoogle Scholar
  18. 128.
    Guo, S.: Equivariant normal forms for neutral functional differential equations. Nonlinear Dyn. 61(1), 311–329 (2010)CrossRefzbMATHGoogle Scholar
  19. 173.
    Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Springer, New York (1978)zbMATHGoogle Scholar
  20. 175.
    Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. World Scientific, Singapore (1992)zbMATHGoogle Scholar
  21. 193.
    Krawcewicz, W., Wu, J.: Theory of Degrees with Applications to Bifurcations and Differential Equations. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)zbMATHGoogle Scholar
  22. 247.
    Poincaré, H.: Mémoire sur les courbes définis par une equation différentielle IV. J. Math. Pures Appl. 1, 167–244 (1885)zbMATHGoogle Scholar
  23. 259.
    Sanders, J.: On the computation of normal forms. Computational aspects of Lie group representations and related topics. In: Cohen, A.M. (ed.) Proceedings of the 1990 Computational Algebra Seminar, CWI Tracts 84, Amsterdam, pp. 129–142 (1991)Google Scholar
  24. 274.
    Takens, F.: Singularities of vector fields. Publ. Math. IHES 43, 47–100 (1974)MathSciNetCrossRefGoogle Scholar
  25. 277.
    Tsiligiannis, C.A., Lyberatos, G.: Normal forms, resonance and bifurcation analysis via the Carleman linearization. J. Math. Anal. Appl. 139, 123–138 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 280.
    Ushiki, S.: Normal forms for singularities of vector fields. Jpn. J. Appl. Math. 1, 1–34 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 284.
    Vanderbauwhede, A.: Local Bifurcation and Symmetry. Research Notes in Mathematics, vol. 75. Pitman, London (1982)Google Scholar
  28. 292.
    Weedermann, M.: Normal forms for neutral functional differential equations. Field. Inst. Comm. 29, 361–368 (2001)MathSciNetGoogle Scholar
  29. 298.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shangjiang Guo
    • 1
  • Jianhong Wu
    • 2
  1. 1.College of Mathematics and EconometricsHunan UniversityChangshaChina, People’s Republic
  2. 2.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations