Advertisement

Introduction to Dynamic Bifurcation Theory

  • Shangjiang Guo
  • Jianhong Wu
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 184)

Abstract

The change in the qualitative behavior of solutions as a control parameter (or control parameters) in a system is varied and is known as a bifurcation. When the solutions are restricted to neighborhoods of a given equilibrium, a bifurcation occurs often when the zero solution of the linearization of the system at the equilibrium changes its stability. To illustrate the basic concepts of bifurcation phenomena, we consider the following continuous dynamical system defined by the C r (r≥1) vector field f: \(\Lambda \times U \rightarrow {\mathbb{R}}^{n}\):
$$\displaystyle{ \dot{x} = f(\mu,x),\quad \mu \in \Lambda \subseteq {\mathbb{R}}^{m},\quad x \in U \subseteq {\mathbb{R}}^{n}, }$$
(1.1)
where U and Λ are open sets, x is the state variable, and μ is the (bifurcation) parameter.

Keywords

Periodic Solution Periodic Orbit Hopf Bifurcation Unstable Manifold Homoclinic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 4.
    Afraimovich, V., Shil’nikov, L.: On singular trajectories of dynamical systems. Usp. Mat. Nauk 5, 189–190 (1972) (in Russian)Google Scholar
  2. 10.
    Alexander, J.C., Yorke, J.A.: Global bifurcations of periodic orbits. Am. J. Math. 100, 263–292 (1978)MathSciNetCrossRefMATHGoogle Scholar
  3. 14.
    Andronov, A.A.: Application of Poincaré’s theorem on “bifurcation points” and “change in stability” to simple auto-oscillatory systems. C. R. Acad. Sci. Paris 189(15), 559–561 (1929)Google Scholar
  4. 15.
    Andronov, A.A., Leontovich, E.: Some cases of dependence of limit cycles on a parameter. J. State Univ. Gorki 6, 3–24 (1937) (in Russian)Google Scholar
  5. 16.
    Andronov, A.A., Pontryagin, L.: Systémes grossiéres. Dokl. Akad. Nauk SSSR 14, 247–251 (1937) (in Russian).Google Scholar
  6. 17.
    Arino, O., Hbid, M.L.: Existence of periodic solutions for a delay differential equation via the Poincaré procedure. Differ. Equat. Dyn. Syst. 4(2), 125–148 (1996)MathSciNetMATHGoogle Scholar
  7. 19.
    Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)CrossRefMATHGoogle Scholar
  8. 20.
    Arnold, V.I.: Lectures on bifurcations in versal families. Russ. Math. Surv. 27, 54–123 (1972)CrossRefGoogle Scholar
  9. 21.
    Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  10. 31.
    Bernfeld, S.R., Negrini, P., Salvadori, L.: Generalized Hopf bifurcation and h-asymptotic stability. J. Nonlinear Anal. Theor. Meth. Appl. 4, 109–1107 (1980)CrossRefGoogle Scholar
  11. 32.
    Bernfeld, S.R., Negrini, P., Salvadori, L.: Quasi-invariant manifolds stability and generalized Hopf bifurcation. Ann. Math. Pura Appl. 4, 105–119 (1982)MathSciNetCrossRefGoogle Scholar
  12. 34.
    Birkhoff, G.D.: Nouvelles recherches sur les systèmes dynamiques. Memoriae Pont. Acad. Sci. Novi. Lincaei Ser. 3 1, 85–216 (1935)MathSciNetGoogle Scholar
  13. 35.
    Bogdanov, R.: Versal deformations of a singular point on the plane in the case of zero eigenvalues. In: Proceedings of Petrovskii Seminar, Moscow State University, vol. 2, pp. 37–65 (1976) (in Russian) (English translation: Selecta Math. Soviet. 1(4), 389–421, 1981)Google Scholar
  14. 44.
    Broer, H.W., Vegter, G.: Subordinate Sil’nikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theor. Dyn. Syst. 4, 509–525 (1984)MathSciNetCrossRefMATHGoogle Scholar
  15. 54.
    Chafee, N.: A bifurcation problem for a functional differential equation of finitely retarded type. J. Math. Anal. Appl. 35, 312–348 (1971)MathSciNetCrossRefMATHGoogle Scholar
  16. 55.
    Chafee, N.: Generalized Hopf bifurcation and perturbation in a full neighborhood of a given vector field. Indiana Univ. Math. J. 27, 173–194 (1978)MathSciNetCrossRefMATHGoogle Scholar
  17. 63.
    Chow, S.N.: Existence of periodic solutions of autonomous functional differential equations. J. Differ. Equat. 15, 350–378 (1974)CrossRefMATHGoogle Scholar
  18. 64.
    Chow, S.-N., Diekmann, O., Mallet-Paret, J.: Multiplicity of symmetric periodic solutions of a nonlinear Volterra integral equation. Jpn. J. Appl. Math. 2, 433–469 (1985)MathSciNetCrossRefMATHGoogle Scholar
  19. 66.
    Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcations of Planar Vector Fields. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  20. 74.
    Crandall, M.G., Rabinowitz, P.H.: The Hopf bifurcation theorem in infinite dimension. Arch. Ration. Mech. Anal. 67, 53–72 (1977/78)Google Scholar
  21. 84.
    Dumortier, F., Ibáñez, S.: Singularities of vector fields on \({\mathbb{R}}^{3}\). Nonlinearity 11, 1037–1047 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 94.
    Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)MathSciNetCrossRefMATHGoogle Scholar
  23. 95.
    Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)MathSciNetCrossRefMATHGoogle Scholar
  24. 96.
    Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equat. 31, 53–98 (1979)MathSciNetCrossRefMATHGoogle Scholar
  25. 98.
    Field, M.J.: Lectures on Bifurcations, Dynamics and Symmetry. Pitman Research Notes in Mathematics, vol. 356. Longman, Harlow (1996)Google Scholar
  26. 102.
    Fiedler, B.: Global Bifurcation of Periodic Solutions with Symmetry. Lecture Notes in Mathematics, vol. 1309. Springer, New York (1988)Google Scholar
  27. 106.
    Gamero, E., Freire, E., Rodríguez-Luis, A.J.: Hopf-zero bifurcation: normal form calculation and application to an electronic oscillator. In: International Conference on Differential Equations, vol. 1, 2 (Barcelona, 1991), pp. 517–524. World Scientific, River Edge, NJ (1993)Google Scholar
  28. 107.
    Gaspard, P.: Local birth of homoclinic chaos. Phys. D 62, 94–122 (1993)MathSciNetCrossRefMATHGoogle Scholar
  29. 108.
    Gavrilov, N.: On some bifurcations of an equilibrium with one zero and a pair of pure imaginary roots. In: Methods of Qualitative Theory of Differential Equations (in Russian). GGU, Gorkii (1978)Google Scholar
  30. 109.
    Gavrilov, N.: Bifurcations of an equilibrium with two pairs of pure imaginary roots. In: Methods of Qualitative Theory of Differential Equations (in Russian). GGU, Gorkii (1980)Google Scholar
  31. 110.
    Gavrilov, N.K., Shil’nikov, L.P.: On three-dimensional systems close to systems with a structurally unstable homoclinic curve: II. Math. USSR-Sb. 19, 139–156 (1973)CrossRefGoogle Scholar
  32. 121.
    Grafton, R.B.: A periodicity theorem for autonomous functional differential equations. J. Differ. Equat. 6, 87–109 (1969)MathSciNetCrossRefMATHGoogle Scholar
  33. 122.
    Grimmer, R.: Existence of periodic solutions of functional differential equations. J Math. Anal. Appl. 72(2), 666–673 (1979)MathSciNetCrossRefMATHGoogle Scholar
  34. 123.
    Grobman, D.: Homeomorphisms of systems of differential equations. Dokl. Akad. Nauk SSSR 128, 880 (1959)MathSciNetMATHGoogle Scholar
  35. 124.
    Guckenheimer, J.: On a codimension two bifurcation. In: Rand, D.A., Young, L.-S. (eds.) Dynamical Systems and Turbulence. Warwick 1980 (Coventry, 1979/1980), vol. 898 of Lecture Notes in Mathematics, pp. 99–142. Springer, Berlin (1981)CrossRefGoogle Scholar
  36. 125.
    Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations: Dynamical System and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefGoogle Scholar
  37. 126.
    Guckenheimer, J.: Multiple bifurcation problems of codimension two. SIAM J. Math. Anal. 15, 1–49 (1984)MathSciNetCrossRefMATHGoogle Scholar
  38. 143.
    Hadeler, K.P., Tomiuk, J.: Periodic solutions of difference differential equations. Arch. Ration. Anal. 1, 87–95 (1977)MathSciNetCrossRefGoogle Scholar
  39. 151.
    Hale, J.K., Huang, W.: Period doubling in singularly perturbed delay equations. J. Differ. Equat. 114, 1–23 (1994)MathSciNetCrossRefMATHGoogle Scholar
  40. 152.
    Hale, J.K., Kocak, H.: Dynamics and Bifurcations. Springer, New York (1991)CrossRefMATHGoogle Scholar
  41. 155.
    Hale, J.K., Weedermann, M.: On perturbations of delay differential equations with periodic orbits. J. Differ. Equat. 197, 219–246 (2004)MathSciNetCrossRefMATHGoogle Scholar
  42. 159.
    Hassard, B.D., Wan, Y.H.: Bifurcation formulae derived from center manifold theory. J. Math. Appl. Math. 42, 297–260 (1978)MathSciNetGoogle Scholar
  43. 161.
    Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11, 610–620 (1960)MathSciNetCrossRefMATHGoogle Scholar
  44. 162.
    Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)MATHGoogle Scholar
  45. 163.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic, New York (1974)MATHGoogle Scholar
  46. 165.
    Hirschberg, P., Knobloch, E: Silnikov-Hopf bifurcation. Phys. D 62, 202–216 (1993)MathSciNetCrossRefMATHGoogle Scholar
  47. 167.
    Hopf, E.: Abzweigung einer periodischen lösung eines Differential Systems. Berichen Math. Phys. Kl. Säch. Akad. Wiss. Leipzig 94, 1–22 (1942)Google Scholar
  48. 169.
    Hsu, I.D., Kazarinoff, N.D.: An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model. J. Math. Anal. Appl. 55, 61–89 (1976)MathSciNetCrossRefGoogle Scholar
  49. 185.
    Kaplan, L., Yorke, J.A.: Ordinary differential equations which yield periodic solutions of differential delay equations. J. Math. Anal. Appl. 48(2), 317–324 (1974)MathSciNetCrossRefMATHGoogle Scholar
  50. 187.
    Keener, J.: Infinite period bifurcation and global bifurcation branches. SIAM J. Appl. Math. 41, 127–144 (1981)MathSciNetCrossRefMATHGoogle Scholar
  51. 200.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 2nd edn. Springer, Berlin (1998)Google Scholar
  52. 201.
    Kuznetsov, Y.A.: Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODEs. SIAM J. Numer. Anal. 36, 1104–1124 (1999)MathSciNetCrossRefMATHGoogle Scholar
  53. 202.
    Langford, W.F.: Periodic and steady-state mode interactions lead to tori. SIAM J. Appl. Math. 37, 649–686 (1979)MathSciNetCrossRefGoogle Scholar
  54. 212.
    Mallet-Paret, J.: Generic periodic solutions of functional differential equation. J. Differ. Equat. 25, 163–183 (1977)MathSciNetCrossRefMATHGoogle Scholar
  55. 214.
    Mallet-Paret, J., Nussbaum, R.: Global continuation and asymptotic behavior for periodic solutions of a delay differential equation. Ann. Math. Pura Appl. 145, 33–128 (1986)MathSciNetCrossRefMATHGoogle Scholar
  56. 217.
    Marsden, J., McCracken, M.: The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences, vol. 19. Springer, New York (1976)Google Scholar
  57. 218.
    Medvedev, V.: On a new type of bifurcations on manifolds. Mat. Sbornik 113, 487–492 (1980) (in Russian)Google Scholar
  58. 225.
    Morita, Y.: Destablization of periodic solutions arising in delay-diffusion systems in several space dimensions. Jpn. J. Appl. Math. 1, 39–65 (1984)CrossRefMATHGoogle Scholar
  59. 228.
    Negrini, P., Salvadori, L.: Attractivity and Hopf bifurcation. Nonlinear Anal. 3, 87–99 (1979)MathSciNetCrossRefGoogle Scholar
  60. 229.
    Neimark, J.I.: Motions close to doubly-asymptotic motion. Soviet Math. Dokl. 8, 228–231 (1967)Google Scholar
  61. 230.
    Newhouse, S., Palis, J., Takens, F.: Bifurcations and stability of families of diffeomorphisms. Publ. Math. Inst. Hautes Etud. Sci. 57, 5–71 (1983)MathSciNetCrossRefMATHGoogle Scholar
  62. 242.
    Palis, J., Pugh, C.: Fifty problems in dynamical systems. In: Manning, A. (ed.) Dynamical Systems – Warwick 1974, vol. 468 of Lecture Notes in Mathematics, pp. 345–353. Springer, Berlin (1975)CrossRefGoogle Scholar
  63. 243.
    Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors, vol. 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993)Google Scholar
  64. 244.
    Peixoto, M.M.: Structural stability on two-dimensional manifolds. Topology 1, 101–120 (1962)MathSciNetCrossRefMATHGoogle Scholar
  65. 246.
    Poincaré, H.: Sur les propriétés des fonctions définies par les équations aux différences partielles. Thése. Gauthier-Villars, Paris (1879)Google Scholar
  66. 248.
    Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, vol. I. Cauthier-Villars, Paris (1892)Google Scholar
  67. 249.
    Pontryagin, L.: On the dynamical systems close to Hamiltonian systems. J. Exp. Theor. Phys. 4, 234–238 (1934) (in Russian)Google Scholar
  68. 250.
    Poore, A.B.: On the theory and application of the Hopf-Friedrichs bifurcation theory. Arch. Ration. Mech. Anal. 60, 371–393 (1976)MathSciNetCrossRefMATHGoogle Scholar
  69. 256.
    Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192, and 23, 343–344 (1971)Google Scholar
  70. 257.
    Rustichini, A.: Hopf bifurcation for functional differential equations of mixed type. J. Dynam. Differ. Equat. 1, 145–177 (1989)MathSciNetCrossRefMATHGoogle Scholar
  71. 258.
    Sacker, R.: On invariant surfaces and bifurcations of periodic solutions of ordinary differential equations. Report IMM-NYU 333, New York University (1964)Google Scholar
  72. 263.
    Shil’nikov, L.P.: On a Poincaré-Birkhoff problem. Math. USSR-Sb. 3, 353–371 (1967)CrossRefGoogle Scholar
  73. 268.
    Smale, S.: Diffeomorphisms with many periodic points. In: Carins, S. (ed.) Differential and Combinatorial Topology, pp. 63–80. Princeton University Press, Princeton, NJ (1963)Google Scholar
  74. 272.
    Takens, F.: A nonstabilizable jet of a singularity of a vector field. In: Dynamical Systems (Proceedings Symposium, University of Bahia, Salvador, 1971), pp. 583–597. Academic, New York (1973)Google Scholar
  75. 274.
    Takens, F.: Singularities of vector fields. Publ. Math. IHES 43, 47–100 (1974)MathSciNetCrossRefGoogle Scholar
  76. 275.
    Thom, R.: Topological models in biology. Topology 8, 313–335 (1969)MathSciNetCrossRefMATHGoogle Scholar
  77. 276.
    Thom, R.: Stabilité structurelle et morphogénése. Benjamin, New York (1972)Google Scholar
  78. 279.
    Turaev, D., Shil’nikov, L.: Blue sky catastrophes. Dokl. Math. 51, 404–407 (1995)MATHGoogle Scholar
  79. 282.
    van Gils, S.A., Valkering, T.: Hopf bifurcation and symmetry: standing and traveling waves in a circular–chain. Jpn. J. Appl. Math. 3, 207–222 (1986)CrossRefMATHGoogle Scholar
  80. 288.
    Walther, H.-O.: A theorem on the amplitudes of periodic solutions of differential delay equations with application to bifurcation. J. Differ. Equat. 29, 396–404 (1978)MathSciNetCrossRefMATHGoogle Scholar
  81. 297.
    Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer, New York (1994)CrossRefMATHGoogle Scholar
  82. 298.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)MATHGoogle Scholar
  83. 299.
    Wittenberg, R.W., Holmes, P.: The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE. Phys. D 100, 1–40 (1997)MathSciNetCrossRefMATHGoogle Scholar
  84. 302.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shangjiang Guo
    • 1
  • Jianhong Wu
    • 2
  1. 1.College of Mathematics and EconometricsHunan UniversityChangshaChina, People’s Republic
  2. 2.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations