Skip to main content

Introduction to Dynamic Bifurcation Theory

  • Chapter
  • First Online:
Bifurcation Theory of Functional Differential Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 184))

  • 3336 Accesses

Abstract

The change in the qualitative behavior of solutions as a control parameter (or control parameters) in a system is varied and is known as a bifurcation. When the solutions are restricted to neighborhoods of a given equilibrium, a bifurcation occurs often when the zero solution of the linearization of the system at the equilibrium changes its stability. To illustrate the basic concepts of bifurcation phenomena, we consider the following continuous dynamical system defined by the C r (r≥1) vector field f: \(\Lambda \times U \rightarrow {\mathbb{R}}^{n}\):

$$\displaystyle{ \dot{x} = f(\mu,x),\quad \mu \in \Lambda \subseteq {\mathbb{R}}^{m},\quad x \in U \subseteq {\mathbb{R}}^{n}, }$$
(1.1)

where U and Λ are open sets, x is the state variable, and μ is the (bifurcation) parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Two smooth manifolds M, \(N \in {\mathbb{R}}^{n}\) intersect transversally if there exist n linearly independent vectors that are tangent to at least one of these manifolds at every intersection point.

References

  1. Afraimovich, V., Shil’nikov, L.: On singular trajectories of dynamical systems. Usp. Mat. Nauk 5, 189–190 (1972) (in Russian)

    Google Scholar 

  2. Alexander, J.C., Yorke, J.A.: Global bifurcations of periodic orbits. Am. J. Math. 100, 263–292 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andronov, A.A.: Application of Poincaré’s theorem on “bifurcation points” and “change in stability” to simple auto-oscillatory systems. C. R. Acad. Sci. Paris 189(15), 559–561 (1929)

    Google Scholar 

  4. Andronov, A.A., Leontovich, E.: Some cases of dependence of limit cycles on a parameter. J. State Univ. Gorki 6, 3–24 (1937) (in Russian)

    Google Scholar 

  5. Andronov, A.A., Pontryagin, L.: Systémes grossiéres. Dokl. Akad. Nauk SSSR 14, 247–251 (1937) (in Russian).

    Google Scholar 

  6. Arino, O., Hbid, M.L.: Existence of periodic solutions for a delay differential equation via the Poincaré procedure. Differ. Equat. Dyn. Syst. 4(2), 125–148 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  8. Arnold, V.I.: Lectures on bifurcations in versal families. Russ. Math. Surv. 27, 54–123 (1972)

    Article  Google Scholar 

  9. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Bernfeld, S.R., Negrini, P., Salvadori, L.: Generalized Hopf bifurcation and h-asymptotic stability. J. Nonlinear Anal. Theor. Meth. Appl. 4, 109–1107 (1980)

    Article  Google Scholar 

  11. Bernfeld, S.R., Negrini, P., Salvadori, L.: Quasi-invariant manifolds stability and generalized Hopf bifurcation. Ann. Math. Pura Appl. 4, 105–119 (1982)

    Article  MathSciNet  Google Scholar 

  12. Birkhoff, G.D.: Nouvelles recherches sur les systèmes dynamiques. Memoriae Pont. Acad. Sci. Novi. Lincaei Ser. 3 1, 85–216 (1935)

    MathSciNet  Google Scholar 

  13. Bogdanov, R.: Versal deformations of a singular point on the plane in the case of zero eigenvalues. In: Proceedings of Petrovskii Seminar, Moscow State University, vol. 2, pp. 37–65 (1976) (in Russian) (English translation: Selecta Math. Soviet. 1(4), 389–421, 1981)

    Google Scholar 

  14. Broer, H.W., Vegter, G.: Subordinate Sil’nikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theor. Dyn. Syst. 4, 509–525 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chafee, N.: A bifurcation problem for a functional differential equation of finitely retarded type. J. Math. Anal. Appl. 35, 312–348 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chafee, N.: Generalized Hopf bifurcation and perturbation in a full neighborhood of a given vector field. Indiana Univ. Math. J. 27, 173–194 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chow, S.N.: Existence of periodic solutions of autonomous functional differential equations. J. Differ. Equat. 15, 350–378 (1974)

    Article  MATH  Google Scholar 

  18. Chow, S.-N., Diekmann, O., Mallet-Paret, J.: Multiplicity of symmetric periodic solutions of a nonlinear Volterra integral equation. Jpn. J. Appl. Math. 2, 433–469 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcations of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  20. Crandall, M.G., Rabinowitz, P.H.: The Hopf bifurcation theorem in infinite dimension. Arch. Ration. Mech. Anal. 67, 53–72 (1977/78)

    Google Scholar 

  21. Dumortier, F., Ibáñez, S.: Singularities of vector fields on \({\mathbb{R}}^{3}\). Nonlinearity 11, 1037–1047 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equat. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Field, M.J.: Lectures on Bifurcations, Dynamics and Symmetry. Pitman Research Notes in Mathematics, vol. 356. Longman, Harlow (1996)

    Google Scholar 

  26. Fiedler, B.: Global Bifurcation of Periodic Solutions with Symmetry. Lecture Notes in Mathematics, vol. 1309. Springer, New York (1988)

    Google Scholar 

  27. Gamero, E., Freire, E., Rodríguez-Luis, A.J.: Hopf-zero bifurcation: normal form calculation and application to an electronic oscillator. In: International Conference on Differential Equations, vol. 1, 2 (Barcelona, 1991), pp. 517–524. World Scientific, River Edge, NJ (1993)

    Google Scholar 

  28. Gaspard, P.: Local birth of homoclinic chaos. Phys. D 62, 94–122 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gavrilov, N.: On some bifurcations of an equilibrium with one zero and a pair of pure imaginary roots. In: Methods of Qualitative Theory of Differential Equations (in Russian). GGU, Gorkii (1978)

    Google Scholar 

  30. Gavrilov, N.: Bifurcations of an equilibrium with two pairs of pure imaginary roots. In: Methods of Qualitative Theory of Differential Equations (in Russian). GGU, Gorkii (1980)

    Google Scholar 

  31. Gavrilov, N.K., Shil’nikov, L.P.: On three-dimensional systems close to systems with a structurally unstable homoclinic curve: II. Math. USSR-Sb. 19, 139–156 (1973)

    Article  Google Scholar 

  32. Grafton, R.B.: A periodicity theorem for autonomous functional differential equations. J. Differ. Equat. 6, 87–109 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grimmer, R.: Existence of periodic solutions of functional differential equations. J Math. Anal. Appl. 72(2), 666–673 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grobman, D.: Homeomorphisms of systems of differential equations. Dokl. Akad. Nauk SSSR 128, 880 (1959)

    MathSciNet  MATH  Google Scholar 

  35. Guckenheimer, J.: On a codimension two bifurcation. In: Rand, D.A., Young, L.-S. (eds.) Dynamical Systems and Turbulence. Warwick 1980 (Coventry, 1979/1980), vol. 898 of Lecture Notes in Mathematics, pp. 99–142. Springer, Berlin (1981)

    Chapter  Google Scholar 

  36. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations: Dynamical System and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  37. Guckenheimer, J.: Multiple bifurcation problems of codimension two. SIAM J. Math. Anal. 15, 1–49 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hadeler, K.P., Tomiuk, J.: Periodic solutions of difference differential equations. Arch. Ration. Anal. 1, 87–95 (1977)

    Article  MathSciNet  Google Scholar 

  39. Hale, J.K., Huang, W.: Period doubling in singularly perturbed delay equations. J. Differ. Equat. 114, 1–23 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hale, J.K., Kocak, H.: Dynamics and Bifurcations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  41. Hale, J.K., Weedermann, M.: On perturbations of delay differential equations with periodic orbits. J. Differ. Equat. 197, 219–246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hassard, B.D., Wan, Y.H.: Bifurcation formulae derived from center manifold theory. J. Math. Appl. Math. 42, 297–260 (1978)

    MathSciNet  Google Scholar 

  43. Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11, 610–620 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  45. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic, New York (1974)

    MATH  Google Scholar 

  46. Hirschberg, P., Knobloch, E: Silnikov-Hopf bifurcation. Phys. D 62, 202–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hopf, E.: Abzweigung einer periodischen lösung eines Differential Systems. Berichen Math. Phys. Kl. Säch. Akad. Wiss. Leipzig 94, 1–22 (1942)

    Google Scholar 

  48. Hsu, I.D., Kazarinoff, N.D.: An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model. J. Math. Anal. Appl. 55, 61–89 (1976)

    Article  MathSciNet  Google Scholar 

  49. Kaplan, L., Yorke, J.A.: Ordinary differential equations which yield periodic solutions of differential delay equations. J. Math. Anal. Appl. 48(2), 317–324 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  50. Keener, J.: Infinite period bifurcation and global bifurcation branches. SIAM J. Appl. Math. 41, 127–144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  52. Kuznetsov, Y.A.: Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODEs. SIAM J. Numer. Anal. 36, 1104–1124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Langford, W.F.: Periodic and steady-state mode interactions lead to tori. SIAM J. Appl. Math. 37, 649–686 (1979)

    Article  MathSciNet  Google Scholar 

  54. Mallet-Paret, J.: Generic periodic solutions of functional differential equation. J. Differ. Equat. 25, 163–183 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mallet-Paret, J., Nussbaum, R.: Global continuation and asymptotic behavior for periodic solutions of a delay differential equation. Ann. Math. Pura Appl. 145, 33–128 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  56. Marsden, J., McCracken, M.: The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences, vol. 19. Springer, New York (1976)

    Google Scholar 

  57. Medvedev, V.: On a new type of bifurcations on manifolds. Mat. Sbornik 113, 487–492 (1980) (in Russian)

    Google Scholar 

  58. Morita, Y.: Destablization of periodic solutions arising in delay-diffusion systems in several space dimensions. Jpn. J. Appl. Math. 1, 39–65 (1984)

    Article  MATH  Google Scholar 

  59. Negrini, P., Salvadori, L.: Attractivity and Hopf bifurcation. Nonlinear Anal. 3, 87–99 (1979)

    Article  MathSciNet  Google Scholar 

  60. Neimark, J.I.: Motions close to doubly-asymptotic motion. Soviet Math. Dokl. 8, 228–231 (1967)

    Google Scholar 

  61. Newhouse, S., Palis, J., Takens, F.: Bifurcations and stability of families of diffeomorphisms. Publ. Math. Inst. Hautes Etud. Sci. 57, 5–71 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  62. Palis, J., Pugh, C.: Fifty problems in dynamical systems. In: Manning, A. (ed.) Dynamical Systems – Warwick 1974, vol. 468 of Lecture Notes in Mathematics, pp. 345–353. Springer, Berlin (1975)

    Chapter  Google Scholar 

  63. Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors, vol. 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  64. Peixoto, M.M.: Structural stability on two-dimensional manifolds. Topology 1, 101–120 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  65. Poincaré, H.: Sur les propriétés des fonctions définies par les équations aux différences partielles. Thése. Gauthier-Villars, Paris (1879)

    Google Scholar 

  66. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, vol. I. Cauthier-Villars, Paris (1892)

    Google Scholar 

  67. Pontryagin, L.: On the dynamical systems close to Hamiltonian systems. J. Exp. Theor. Phys. 4, 234–238 (1934) (in Russian)

    Google Scholar 

  68. Poore, A.B.: On the theory and application of the Hopf-Friedrichs bifurcation theory. Arch. Ration. Mech. Anal. 60, 371–393 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192, and 23, 343–344 (1971)

    Google Scholar 

  70. Rustichini, A.: Hopf bifurcation for functional differential equations of mixed type. J. Dynam. Differ. Equat. 1, 145–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  71. Sacker, R.: On invariant surfaces and bifurcations of periodic solutions of ordinary differential equations. Report IMM-NYU 333, New York University (1964)

    Google Scholar 

  72. Shil’nikov, L.P.: On a Poincaré-Birkhoff problem. Math. USSR-Sb. 3, 353–371 (1967)

    Article  Google Scholar 

  73. Smale, S.: Diffeomorphisms with many periodic points. In: Carins, S. (ed.) Differential and Combinatorial Topology, pp. 63–80. Princeton University Press, Princeton, NJ (1963)

    Google Scholar 

  74. Takens, F.: A nonstabilizable jet of a singularity of a vector field. In: Dynamical Systems (Proceedings Symposium, University of Bahia, Salvador, 1971), pp. 583–597. Academic, New York (1973)

    Google Scholar 

  75. Takens, F.: Singularities of vector fields. Publ. Math. IHES 43, 47–100 (1974)

    Article  MathSciNet  Google Scholar 

  76. Thom, R.: Topological models in biology. Topology 8, 313–335 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  77. Thom, R.: Stabilité structurelle et morphogénése. Benjamin, New York (1972)

    Google Scholar 

  78. Turaev, D., Shil’nikov, L.: Blue sky catastrophes. Dokl. Math. 51, 404–407 (1995)

    MATH  Google Scholar 

  79. van Gils, S.A., Valkering, T.: Hopf bifurcation and symmetry: standing and traveling waves in a circular–chain. Jpn. J. Appl. Math. 3, 207–222 (1986)

    Article  MATH  Google Scholar 

  80. Walther, H.-O.: A theorem on the amplitudes of periodic solutions of differential delay equations with application to bifurcation. J. Differ. Equat. 29, 396–404 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  81. Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer, New York (1994)

    Book  MATH  Google Scholar 

  82. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  83. Wittenberg, R.W., Holmes, P.: The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE. Phys. D 100, 1–40 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  84. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guo, S., Wu, J. (2013). Introduction to Dynamic Bifurcation Theory. In: Bifurcation Theory of Functional Differential Equations. Applied Mathematical Sciences, vol 184. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6992-6_1

Download citation

Publish with us

Policies and ethics