Advertisement

Buprenorphine Metabolism and Drug–Drug Interactions

  • Robert TaylorJr.
  • Robert B. Raffa
  • Joseph V. PergolizziJr.
Chapter

Abstract

The metabolism of buprenorphine involves both Phase I type reactions that are catalyzed by cytochrome P450 (CYP) enzymes and Phase II type reactions that are catalyzed by UDP-glucuronosyltransferase (UGT) enzymes [1]. There is also a significant enterohepatic recirculation of glucuronidated products. This profile of biotransformation is generally similar in all mammals except cats, which lack or only poorly express UGT enzymes.

Keywords

Nucleoside Reverse Transcriptase Inhibitor Opiate Withdrawal Opioid Addiction Buprenorphine Maintenance Therapy Abdominal Constriction Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cowan A, Friderichs E, Straburger W, Raffa RB. Basic pharmacology of buprenorphine. In: Budd K, Raffa RB, editors. Buprenorphine—the unique opioid analgesic. Stuttgart: Thieme; 2005. p. 3–21.Google Scholar
  2. 2.
    Brewster D, Humphrey MJ, McLeavy MA. Biliary excretion, metabolism and enterohepatic circulation of buprenorphine. Xenobiotica. 1981;11(3):189–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Castle SJ, Tucker GT, Woods HF, et al. Assessment of an in situ rat intestine preparation with perfused vascular bed for studying the absorption and first-pass metabolism of drugs. J Pharmacol Methods. 1985;14(4):255–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Rance MJ, Shillingford JS. The metabolism of phenolic opiates by rat intestine. Xenobiotica. 1977;7(9):529–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Picard N, Cresteil T, Djebli N, Marquet P. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005;33(5):689–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Ohtani M, Shibuya F, Kotaki H, Uchino K, Saitoh Y, Nakagawa F. Quantitative determination of buprenorphine and its active metabolite, norbuprenorphine, in human plasma by gas chromatography–chemical ionization mass spectrometry. J Chromatogr. 1989;487(2):469–75.PubMedGoogle Scholar
  7. 7.
    Hand CW, Ryan KE, Dutt SK, et al. Radioimmunoassay of buprenorphine in urine: studies in patients and in a drug clinic. J Anal Toxicol. 1989;13(2):100–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuhlman Jr JJ, Levine B, Johnson RE, Fudala PJ, Cone EJ. Relationship of plasma buprenorphine and norbuprenorphine to withdrawal symptoms during dose induction, maintenance and withdrawal from sublingual buprenorphine. Addiction. 1998;93(4):549–59.PubMedGoogle Scholar
  9. 9.
    Cone EJ, Gorodetzky CW, Yousefnejad D, Buchwald WF, Johnson RE. The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos. 1984;12(5):577–81.PubMedGoogle Scholar
  10. 10.
    Huang P, Kehner GB, Cowan A, Liu-Chen L-Y. Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J Pharmacol Exp Ther. 2001;297(2):688–95.PubMedGoogle Scholar
  11. 11.
    Ohtani M, Kotaki H, Nishitateno K, Sawada Y, Iga T. Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite, norbuprenorphine. J Pharmacol Exp Ther. 1997;281(1):428–33.PubMedGoogle Scholar
  12. 12.
    Ohtani M, Kotaki H, Sawada Y, Iga T. Comparative analysis of buprenorphine- and norbuprenorphine-­induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J Pharmacol Exp Ther. 1995;272(2):505–10.PubMedGoogle Scholar
  13. 13.
    Pontani RB, Vadlamani NL, Misra AL. Disposition in the rat of buprenorphine administered parenterally and as a subcutaneous implant. Xenobiotica. 1985;15(4):287–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Yue H, Borenstein MR, Jansen SA, Raffa RB. Liquid chromatography-mass spectrometric analysis of buprenorphine and its N-dealkylated metabolite norbuprenorphine in rat brain tissue and plasma. J Pharmacol Toxicol Methods. 2005;52(3):314–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Davies G, Kingswood C, Street M. Pharmacokinetics of opioids in renal dysfunction. Clin Pharmacokinet. 1996;31(6):410–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Murphy EJ. Acute pain management pharmacology for the patient with concurrent renal or hepatic disease. Anaesth Intensive Care. 2005;33(3):311–22.PubMedGoogle Scholar
  17. 17.
    Summerfield RJ, Allen MC, Moore RA, Sear JW, McQuay HJ. Buprenorphine in end stage renal failure. Anaesthesia. 1985;40(9):914.PubMedCrossRefGoogle Scholar
  18. 18.
    Boger RH. Renal impairment: a challenge for opioid treatment? The role of buprenorphine. Palliat Med. 2006;20 Suppl 1Suppl 1:s17–23.PubMedGoogle Scholar
  19. 19.
    Chan G, Matzke G. Effects of renal insufficiency on the pharmacokinetics and pharmacodynamics of opioid analgesics. Ann Pharmacother. 1987;21(10):773–83.Google Scholar
  20. 20.
    Mercadante S. The role of morphine glucuronides in cancer pain. Palliat Med. 1999;13(2):95–104.PubMedCrossRefGoogle Scholar
  21. 21.
    Peterson GM, Randall CT, Paterson J. Plasma levels of morphine and morphine glucuronides in the treatment of cancer pain: relationship to renal function and route of administration. Eur J Clin Pharmacol. 1990;38(2):121–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Hand CW, Sear JW, Uppington J, Ball MJ, McQuay HJ, Moore RA. Buprenorphine disposition in patients with renal impairment: single and continuous dosing, with special reference to metabolites. Br J Anaesth. 1990;64(3):276–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Kacinko SL, Jones HE, Johnson RE, Choo RE, Concheiro-Guisan M, Huestis MA. Urinary excretion of buprenorphine, norbuprenorphine, buprenorphine-glucuronide, and norbuprenorphine-­glucuronide in pregnant women receiving buprenorphine maintenance treatment. Clin Chem. 2009;55(6):1177–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Concheiro M, Jones HE, Johnson RE, Choo R, Shakleya DM, Huestis MA. Maternal buprenorphine dose, placenta buprenorphine, and metabolite concentrations and neonatal outcomes. Ther Drug Monit. 2010;32(2):206–15.PubMedGoogle Scholar
  25. 25.
    Deshmukh SV, Nanovskaya TN, Ahmed MS. Aromatase is the major enzyme metabolizing buprenorphine in human placenta. J Pharmacol Exp Ther. 2003;306(3):1099–105.PubMedCrossRefGoogle Scholar
  26. 26.
    Fokina VM, Patrikeeva SL, Zharikova OL, Nanovskaya TN, Hankins GV, Ahmed MS. Transplacental transfer and metabolism of buprenorphine in preterm human placenta. Am J Perinatol. 2011;28(1):25–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Lindemalm S, Nydert P, Svensson JO, Stahle L, Sarman I. Transfer of buprenorphine into breast milk and calculation of infant drug dose. J Hum Lact. 2009;25(2):199–205.PubMedCrossRefGoogle Scholar
  28. 28.
    Altice FL, Bruce RD, Lucas GM, et al. HIV treatment outcomes among HIV-infected, opioid-­dependent patients receiving buprenorphine/naloxone treatment within HIV clinical care settings: results from a multisite study. J Acquir Immune Defic Syndr. 2011;56:S22–32. doi: 10.1097/QAI.1090b1013e318209751e.PubMedCrossRefGoogle Scholar
  29. 29.
    Bruce RD, Altice FL. Three case reports of a clinical pharmacokinetic interaction with buprenorphine and atazanavir plus ritonavir. AIDS. 2006;20(5):783–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Bruce RD, McCance-Katz E, Kharasch ED, Moody DE, Morse GD. Pharmacokinetic interactions between buprenorphine and antiretroviral medications. Clin Infect Dis. 2006;43 Suppl 4Suppl 4:S216–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Spire B, Lucas GM, Carrieri MP. Adherence to HIV treatment among IDUs and the role of opioid substitution treatment (OST). Int J Drug Policy. 2007;18(4):262–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Arnsten JH, Demas PA, Grant RW, et al. Impact of active drug use on antiretroviral therapy adherence and viral suppression in HIV-infected drug users. J Gen Intern Med. 2002;17(5):377–81.PubMedGoogle Scholar
  33. 33.
    Howard AA, Arnsten JH, Lo Y, et al. A prospective study of adherence and viral load in a large multi-center cohort of HIV-infected women. AIDS. 2002;16(16):2175–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Mehta S, Moore RD, Graham NMH. Potential factors affecting adherence with HIV therapy. AIDS. 1997;11(14):1665–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Williams A, Friedland G. Adherence, compliance, and HAART. AIDS Clin Care. 1997;9(7):51–54, 58.Google Scholar
  36. 36.
    Lucas GM, Gebo KA, Chaisson RE, Moore RD. Longitudinal assessment of the effects of drug and alcohol abuse on HIV-1 treatment outcomes in an urban clinic. AIDS. 2002;16(5):767–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Basu S, Smith-Rohrberg D, Bruce RD, Altice FL. Models for integrating buprenorphine therapy into the primary HIV care setting. Clin Infect Dis. 2006;42(5):716–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Lucas GM, Mullen BA, McCaul ME, Weidle PJ, Hader S, Moore RD. Adherence, drug use, and treatment failure in a methadone-clinic-based program of directly administered antiretroviral therapy. AIDS Patient Care STDS. 2007;21(8):564–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Altice FL, Friedland GH, Cooney EL. Nevirapine induced opiate withdrawal among injection drug users with HIV infection receiving methadone. AIDS. 1999;13(8):957–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Bruce RD, Altice FL. Clinical care of the HIV-infected drug user. Infect Dis Clin North Am. 2007;21(1):149–179, ix.Google Scholar
  41. 41.
    Jimenez-Nacher I, Alvarez E, Morello J, Rodriguez-Novoa S, de Andres S, Soriano V. Approaches for understanding and predicting drug interactions in human immunodeficiency virus-infected patients. Expert Opin Drug Metab Toxicol. 2011;7(4):457–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Bruce RD, Altice FL, Moody DE, et al. Pharmacokinetic interactions between ­buprenorphine/naloxone and once-daily lopinavir/ritonavir. J Acquir Immune Defic Syndr. 2010;54(5):511–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Sekar V, Tomaka F, Lefebvre E, et al. Pharmacokinetic interactions between darunavir/ritonavir and opioid maintenance therapy using methadone or buprenorphine/naloxone. J Clin Pharmacol. 2011;51(2):271–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Bruce RD, Altice FL, Moody DE, et al. Pharmacokinetic interactions between buprenorphine/naloxone and tipranavir/ritonavir in HIV-negative subjects chronically receiving buprenorphine/naloxone. Drug Alcohol Depend. 2009;105(3):234–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Vergara-Rodriguez P, Tozzi MJ, Botsko M, et al. Hepatic safety and lack of antiretroviral interactions with buprenorphine/naloxone in HIV-infected opioid-dependent patients. J Acquir Immune Defic Syndr. 2011;56 Suppl 1Suppl 1:S62–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Reckitt Benckiser Pharmaceuticals Inc. Suboxone Package Insert; 2010.Google Scholar
  47. 47.
    Barry M, Mulcahy F, Merry C, Gibbons S, Back D. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 1999;36(4):289–304.PubMedCrossRefGoogle Scholar
  48. 48.
    Back D, Gibbons S, Khoo S. Pharmacokinetic drug interactions with nevirapine. J Acquir Immune Defic Syndr. 2003;34 Suppl 1Suppl 1:S8–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Clarke SM, Mulcahy FM, Tjia J, et al. Pharmacokinetic interactions of nevirapine and methadone and guidelines for use of nevirapine to treat injection drug users. Clin Infect Dis. 2001;33(9):1595–7.PubMedCrossRefGoogle Scholar
  50. 50.
    McCance-Katz EF, Gourevitch MN, Arnsten J, Sarlo J, Rainey P, Jatlow P. Modified directly observed therapy (MDOT) for injection drug users with HIV disease. Am J Addict. Fall 2002;11(4):271–8.Google Scholar
  51. 51.
    McCance-Katz EF. Treatment of opioid dependence and coinfection with HIV and hepatitis C virus in opioid-dependent patients: the importance of drug interactions between opioids and antiretroviral agents. Clin Infect Dis. 2005;41 Suppl 1Suppl 1:S89–95.PubMedCrossRefGoogle Scholar
  52. 52.
    McCance-Katz EF, Moody DE, Morse GD, Ma Q, Rainey PM. Lack of clinically significant drug interactions between nevirapine and buprenorphine. Am J Addict. 2010;19(1):30–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Baker J, Rainey PM, Moody DE, Morse GD, Ma Q, McCance-Katz EF. Interactions between buprenorphine and antiretrovirals: nucleos(t)ide reverse transcriptase inhibitors (NRTI) didanosine, lamivudine, and tenofovir. Am J Addict Jan-Feb. 2010;19(1):17–29.CrossRefGoogle Scholar
  54. 54.
    Stitzer ML, Griffiths RR, McLellan AT, Grabowski J, Hawthorne JW. Diazepam use among methadone maintenance patients: patterns and dosages. Drug Alcohol Depend. 1981;8(3):189–99.PubMedCrossRefGoogle Scholar
  55. 55.
    Gossop M, Marsden J, Stewart D, Kidd T. The National Treatment Outcome Research Study (NTORS): 4–5 year follow-up results. Addiction. 2003;98(3):291–303.PubMedCrossRefGoogle Scholar
  56. 56.
    Darke S. The use of benzodiazepines among injecting drug users. Drug Alcohol Rev. 1994;13(1):63–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Nielsen S, Dietze P, Lee N, Dunlop A, Taylor D. Concurrent buprenorphine and benzodiazepines use and self-reported opioid toxicity in opioid substitution treatment. Addiction. 2007;102(4):616–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Thirion X, Lapierre V, Micallef J, et al. Buprenorphine prescription by general practitioners in a French region. Drug Alcohol Depend. 2002;65(2):197–204.PubMedCrossRefGoogle Scholar
  59. 59.
    Lavie E, Fatseas M, Denis C, Auriacombe M. Benzodiazepine use among opiate-dependent subjects in buprenorphine maintenance treatment: correlates of use, abuse and dependence. Drug Alcohol Depend. 2009;99(1–3):338–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Kandel DB, Huang FY, Davies M. Comorbidity between patterns of substance use dependence and psychiatric syndromes. Drug Alcohol Depend. 2001;64(2):233–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Farrell M, Howes S, Taylor C, et al. Substance misuse and psychiatric comorbidity: an overview of the OPCS National Psychiatric Morbidity Survey. Addict Behav. 1998;23(6):909–18.PubMedCrossRefGoogle Scholar
  62. 62.
    Marsden J, Gossop M, Stewart D, Rolfe A, Farrell M. Psychiatric symptoms among clients seeking treatment for drug dependence. Br J Psychiatry. 2000;176(3):285–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Ross J, Teesson M, Darke S, et al. The characteristics of heroin users entering treatment: ­findings from the Australian treatment outcome study (ATOS). Drug Alcohol Rev. 2005;24(5):411–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Fry CL, Bruno RB. Recent trends in benzodiazepine use by injecting drug users in Victoria and Tasmania. Drug Alcohol Rev. 2002;21(4):363–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Pirnay S, Borron SW, Giudicelli CP, Tourneau J, Baud FJ, Ricordel I. A critical review of the causes of death among post-mortem toxicological investigations: analysis of 34 buprenorphine-­associated and 35 methadone-associated deaths. Addiction. 2004;99(8):978–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Kintz P. Deaths involving buprenorphine: a compendium of French cases. Forensic Sci Int. 2001;121(1–2):65–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Kintz P. A new series of 13 buprenorphine-related deaths. Clin Biochem. 2002;35(7):513–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Reynaud M, Petit G, Potard D, Courty P. Six deaths linked to concomitant use of buprenorphine and benzodiazepines. Addiction. 1998;93(9):1385–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Tracqui A, Kintz P, Ludes B. Buprenorphine-related deaths among drug addicts in France: a report on 20 fatalities. J Anal Toxicol. 1998;22(6):430–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Tracqui A, Tournoud C, Flesch F, et al. Acute poisoning during substitution therapy based on high-dosage buprenorphine. 29 clinical cases–20 fatal cases. Presse Med. 1998;27(12):557–61.PubMedGoogle Scholar
  71. 71.
    Gueye PN, Megarbane B, Borron SW, et al. Trends in opiate and opioid poisonings in addicts in north-east Paris and suburbs, 1995–99. Addiction. 2002;97(10):1295–304.PubMedCrossRefGoogle Scholar
  72. 72.
    Druid H, Holmgren P, Ahlner J. Flunitrazepam: an evaluation of use, abuse and toxicity. Forensic Sci Int. 2001;122(2):136–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Boyd J, Randell T, Luurila H, Kuisma M. Serious overdoses involving buprenorphine in Helsinki. Acta Anaesthesiol Scand. 2003;47(8):1031–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Chang Y, Moody DE. Effect of benzodiazepines on the metabolism of buprenorphine in human liver microsomes. Eur J Clin Pharmacol. 2005;60(12):875–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Bomsien S, Aderjan R, Mattern R, Skopp G. Effect of psychotropic medication on the in vitro metabolism of buprenorphine in human cDNA-expressed cytochrome P450 enzymes. Eur J Clin Pharmacol. 2006;62(8):639–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Kilicarslan T, Sellers EM. Lack of interaction of buprenorphine with flunitrazepam metabolism. Am J Psychiatry. 2000;157(7):1164–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Saber-Tehrani AS, Bruce RD, Altice FL. Pharmacokinetic drug interactions and adverse consequences between psychotropic medications and pharmacotherapy for the treatment of opioid dependence. Am J Drug Alcohol Abuse. 2011;37(1):1–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Iribarne C, Picart D, Dréano Y, Berthou F. In vitro interactions between fluoxetine or fluvoxamine and methadone or buprenorphine. Fundam Clin Pharmacol. 1998;12(2):194–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Ketter TA, Frye MA, Cora-Locatelli G, Kimbrell TA, Post RM. Metabolism and excretion of mood stabilizers and new anticonvulsants. Cell Mol Neurobiol. 1999;19(4):511–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol. 1994;47(11):1969–79.PubMedCrossRefGoogle Scholar
  81. 81.
    Kristensen O, Lolandsmo T, Isaksen A, Vederhus JK, Clausen T. Treatment of polydrug-using opiate dependents during withdrawal: towards a standardisation of treatment. BMC Psychiatry. 2006;6:54.PubMedCrossRefGoogle Scholar
  82. 82.
    Schneider U, Paetzold W, Eronat V, et al. Buprenorphine and carbamazepine as a treatment for detoxification of opiate addicts with multiple drug misuse: a pilot study. Addict Biol. 2000;5(1):65–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Seifert J, Metzner C, Paetzold W W, et al. Detoxification of opiate addicts with multiple drug abuse: a comparison of buprenorphine vs. methadone. Pharmacopsychiatry. 2002;35(5):159–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Maddux JF, Desmond DP, Costello R. Depression in opioid users varies with substance use status. Am J Drug Alcohol Abuse. 1987;13(4):375–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Darke S, Wodak A, Hall W, Heather N, Ward J. Prevalence and predictors of psychopathology among opioid users. Br J Addict. 1992;87(5):771–6.PubMedCrossRefGoogle Scholar
  86. 86.
    El-Ganzouri AR, Ivankovich AD, Braverman B, McCarthy R. Monoamine oxidase inhibitors. Anesth Analg. 1985;64(6):592–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Insler SR, Kraenzler EJ, Licina MG, Savage RM, Starr NJ. Cardiac surgery in a patient taking monoamine oxidase inhibitors: an adverse fentanyl reaction. Anesth Analg. 1994;78(3):593–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Michaels I, Serrins M, Shier NQ, Barash PG. Anesthesia for cardiac surgery in patients receiving monoamine oxidase inhibitors. Anesth Analg. 1984;63(11):1041–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth. 2005;95(4):434–41.PubMedCrossRefGoogle Scholar
  90. 90.
    MacKenzie JE, Frank LW. Influence of pretreatment with a monoamine oxidase inhibitor (phenelzine) on the effects of buprenorphine and pethidine in the conscious rabbit. Br J Anaesth. 1988;60(2):216–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang W, Xiao H, Lu L. Case–control retrospective study of pulmonary tuberculosis in heroin-­abusing patients in China. J Psychoactive Drugs. 2006;38(2):203–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Conover C, Ridzon R, Valway S, et al. Outbreak of multidrug-resistant tuberculosis at a methadone treatment program. Int J Tuberc Lung Dis. 2001;5(1):59–64.PubMedGoogle Scholar
  93. 93.
    Friedland G. Infectious disease comorbidities adversely affecting substance users with HIV: hepatitis C and tuberculosis. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2010;55:S37–42. doi: 10.1097/QAI.1090b1013e3181f1099c1090b1096.CrossRefGoogle Scholar
  94. 94.
    Sylla L, Bruce RD, Kamarulzaman A, Altice FL. Integration and co-location of HIV/AIDS, tuberculosis and drug treatment services. Int J Drug Policy. 2007;18(4):306–12.PubMedCrossRefGoogle Scholar
  95. 95.
    Centers for Disease Control and Prevention. Prevention and treatment of tuberculosis among patients infected with human immunodeficiency virus: principles of therapy and revised recommendations. MMWR Recomm Rep. 1998;47(RR20):1–58.Google Scholar
  96. 96.
    Holmes VF. Rifampin-induced methadone withdrawal in AIDS. J Clin Psychopharmacol. 1990;10(6):443–4.PubMedGoogle Scholar
  97. 97.
    Kreek MJ, Garfield JW, Gutjahr CL, Giusti LM. Rifampin-induced methadone withdrawal. N Engl J Med. 1976;294(20):1104–6.PubMedCrossRefGoogle Scholar
  98. 98.
    McCance-Katz EF, Moody DE, Prathikanti S, Friedland G, Rainey PM. Rifampin, but not rifabutin, may produce opiate withdrawal in buprenorphine-maintained patients. Drug Alcohol Depend. 2011;118(2–3):326–34.PubMedCrossRefGoogle Scholar
  99. 99.
    McCance-Katz EF, Rainey PM, Moody DE. Effect of cocaine use on buprenorphine pharmacokinetics in humans. Am J Addict. 2010;19(1):38–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Robert TaylorJr.
    • 1
  • Robert B. Raffa
    • 2
  • Joseph V. PergolizziJr.
    • 3
    • 4
    • 5
  1. 1.NEMA Research, Inc.NaplesUSA
  2. 2.Pharmaceutical SciencesTemple University School of PharmacyPhiladelphiaUSA
  3. 3.Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of AnesthesiologyGeorgetown University School of MedicineWashington, DCUSA
  5. 5.Department of PharmacologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations