Interactions with Graph Polynomials

  • Joanna A. Ellis-Monaghan
  • Iain Moffatt
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


Chapter 4 explores twisted duality as a tool for extracting both combinatorial and topological information from topological graph polynomials. We begin with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., 364, 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological transition polynomial specialises to the topological Penrose polynomial and, with some restriction, agrees with the topochromatic polynomial and hence the ribbon graph polynomial of Bollobás and Riordan. Thus, the identities for the topological transition polynomial lead in turn to new results for these polynomials, including reformulations of the Four Colour Theorem. We survey these results in this chapter.


  1. 2.
    Aigner M (1997) The Penrose polynomial of a plane graph. Math Ann 307:173–189MathSciNetzbMATHCrossRefGoogle Scholar
  2. 4.
    Bollobás B (1998) Modern graph theory. In: Graduate texts in mathematics, vol 184. Springer, New YorkGoogle Scholar
  3. 5.
    Bollobás B, Riordan O (2001) A polynomial for graphs on orientable surfaces. Proc London Math Soc 83:513–531MathSciNetzbMATHCrossRefGoogle Scholar
  4. 6.
    Bollobás B, Riordan O (2002) A polynomial of graphs on surfaces. Math Ann 323:81–96MathSciNetzbMATHCrossRefGoogle Scholar
  5. 8.
    Bradford R, Butler C, Chmutov S (2012) Arrow ribbon graphs. J Knot Theory Ramifications 21:1240002MathSciNetCrossRefGoogle Scholar
  6. 10.
    Brylawski T (1982) The Tutte polynomial. Part 1: General theory. In: Barlotti A (ed) Matroid theory and its applications, proceedings of the third international mathematical summer center (C.I.M.E. 1980), pp 125–275Google Scholar
  7. 11.
    Brylawski T, Oxley J (1992) The Tutte polynomial and its applications. In: White N (ed) Matroid applications, encyclopedia of mathematics and its applications. Cambridge University Press, CambridgeGoogle Scholar
  8. 15.
    Champanerkar A, Kofman I, Stoltzfus N (2011) Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial. Bull Lond Math Soc 43:972–984MathSciNetzbMATHCrossRefGoogle Scholar
  9. 16.
    Chmutov S (2009) Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial. J Combin Theory Ser B 99:617–638MathSciNetzbMATHCrossRefGoogle Scholar
  10. 17.
    Chmutov S, Pak I (2007) The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial. Mosc Math J 7:409–418MathSciNetzbMATHGoogle Scholar
  11. 18.
    Chmutov S, Voltz J (2008) Thistlethwaite’s theorem for virtual links. J Knot Theory Ramifications 17:1189–1198MathSciNetzbMATHCrossRefGoogle Scholar
  12. 21.
    Dasbach O, Futer D, Kalfagianni E, Lin X-S, Stoltzfus N (2008) The Jones polynomial and graphs on surfaces. J Combin Theory Ser B 98:384–399MathSciNetzbMATHCrossRefGoogle Scholar
  13. 26.
    Ellis-Monaghan J, Merino C (2011) Graph polynomials and their applications I: the Tutte polynomial. In: Dehmer M (ed) Structural analysis of complex networks. Birkhauser, New York, pp 219–255CrossRefGoogle Scholar
  14. 27.
    Ellis-Monaghan J, Merino C (2011) Graph polynomials and their applications II: interrelations and interpretations. In: Dehmer M (ed) Structural analysis of complex networks. Birkhauser, New York, pp 257–292CrossRefGoogle Scholar
  15. 28.
    Ellis-Monaghan J, Moffatt I (2013) A Penrose polynomial for embedded graphs. Eur J Combin 34:424–445MathSciNetzbMATHCrossRefGoogle Scholar
  16. 30.
    Ellis-Monaghan J, Moffatt I (2012) Twisted duality and polynomials of embedded graphs. Trans Amer Math Soc 364:1529–1569MathSciNetzbMATHCrossRefGoogle Scholar
  17. 31.
    Ellis-Monaghan J, Sarmiento I (2001) Medial graphs and the Penrose polynomial. Congr Numer, vol 150, pp 211–222MathSciNetzbMATHGoogle Scholar
  18. 32.
    Ellis-Monaghan J, Sarmiento I (2002) Generalized transition polynomials. Congr Numer 155:57–69MathSciNetzbMATHGoogle Scholar
  19. 33.
    Ellis-Monaghan J, Sarmiento I. A duality relation for the topological Tutte polynomial, talk at the AMS eastern section meeting special session on graph and matroid invariants, bard college.\#Research. Accessed 10 Sept 2005
  20. 34.
    Ellis-Monaghan J, Sarmiento I (2011) A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan. Eur J Combin 32:782–794MathSciNetzbMATHCrossRefGoogle Scholar
  21. 43.
    Huggett S, Moffatt I (2011) Expansions for the Bollobás-Riordan and Tutte polynomials of separable ribbon graphs. Ann Comb 15:675–706MathSciNetzbMATHCrossRefGoogle Scholar
  22. 49.
    Jaeger F (1988) On Tutte polynomials and cycles of plane graphs. J Combin Theory Ser B 44:127–146MathSciNetzbMATHCrossRefGoogle Scholar
  23. 50.
    Jaeger F (1990) On transition polynomials of 4-regular graphs. In: Hahn G. et al (eds) Cycles and rays (Montreal, PQ, 1987). NATO advanced science institutes series c: mathematical and physical sciences, vol 301. Kluwer Academic, Dordrecht, pp 123–150Google Scholar
  24. 51.
    Jin X, Zhang F (2012) The Homfly and dichromatic polynomials. Proc Amer Math Soc 140:1459–1472MathSciNetzbMATHCrossRefGoogle Scholar
  25. 61.
    Korn M, Pak I. Combinatorial evaluations of the Tutte polynomial (preprint)Google Scholar
  26. 65.
    Las Vergnas M (1981) Eulerian circuits of 4-valent graphs imbedded in surfaces. In: Algebraic methods in graph theory, vols I, II (Szeged, 1978), vol 25. Colloquia Mathematica Societatis Jnos Bolyai, North-Holland, Amsterdam, New York, pp 451–477Google Scholar
  27. 67.
    Las Vergnas M (1980) On the Tutte polynomial of a morphism of matroids. Ann Discrete Math 8:7–20MathSciNetzbMATHCrossRefGoogle Scholar
  28. 70.
    Loebl M, Moffatt I (2008) The chromatic polynomial of fatgraphs and its categorification. Adv Math 217:1558–1587MathSciNetzbMATHCrossRefGoogle Scholar
  29. 75.
    Moffatt I (2008) Knot invariants and the Bollobás-Riordan polynomial of embedded graphs. Eur J Combin 29: 95–107MathSciNetzbMATHCrossRefGoogle Scholar
  30. 77.
    Moffatt I (2011) Unsigned state models for the Jones polynomial. Ann Comb 15: 127–146MathSciNetzbMATHCrossRefGoogle Scholar
  31. 83.
    Oxley J, Welsh D (1979) The Tutte polynomial and percolation. In: Bondy JA, Murty USR (eds) Graph theory and related topics. Academic, LondonGoogle Scholar
  32. 84.
    Penrose R (1971) Applications of negative dimensional tensors, combinatorial mathematics and its applications. In: Proceedings of the conference held in Oxford in 1969. Academic, London, pp 221–244Google Scholar
  33. 96.
    Vignes-Tourneret F (2009) The multivariate signed Bollobás-Riordan polynomial. Discrete Math 309:5968–5981MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Joanna A. Ellis-Monaghan, Iain Moffatt 2013

Authors and Affiliations

  • Joanna A. Ellis-Monaghan
    • 1
  • Iain Moffatt
    • 2
  1. 1.Department of MathematicsSaint Michael’s CollegeColchesterUSA
  2. 2.Department of MathematicsRoyal Holloway University of LondonEgham, SurreyUK

Personalised recommendations