Generalised Dualities

  • Joanna A. Ellis-Monaghan
  • Iain Moffatt
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


This chapter introduces the framework upon which we will build the rest of this monograph. We begin by considering geometric duals and Petrials, observing that Petriality and geometric duality result from local operations on each edge of an embedded graph. These local operations applied to subsets of the edge set result in partial Petrality and partial duality. We provide constructions for partial duals and partial Petrials in various realisations of embedded graphs.The two operations of partial Petrality and partial duality give rise to an action of the symmetric group on embedded graphs with a distinguished set of edges. This group action leads to twisted duality, which assimilates several types of duality from the literature, including geometric duality, direct derivatives, Petrie duals, and partial duality. We concluded by defining the ribbon group and describing how twisted duality can be obtained as orbits under the ribbon group action on the set of edge-ordered embedded graphs.


  1. 1.
    Abe T (2009) The Turaev genus of an adequate knot. Topology Appl 156:2704–2712MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aigner M (1997) The Penrose polynomial of a plane graph. Math Ann 307:173–189MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Askanazi R, Chmutov S, Estill C, Michel J, Stollenwerk P (2013) Polynomial invariants of graphs on surfaces. Quantum Topol 3:77–90MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bollobás B (1998) Modern graph theory. In: Graduate texts in mathematics, vol 184. Springer, New YorkGoogle Scholar
  5. 5.
    Bollobás B, Riordan O (2001) A polynomial for graphs on orientable surfaces. Proc London Math Soc 83:513–531MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bollobás B, Riordan O (2002) A polynomial of graphs on surfaces. Math Ann 323:81–96MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bondy J, Murty U (2008) Graph theory. In: Graduate texts in mathematics, vol 244. Springer, New YorkGoogle Scholar
  8. 8.
    Bradford R, Butler C, Chmutov S (2012) Arrow ribbon graphs. J Knot Theory Ramifications 21:1240002MathSciNetCrossRefGoogle Scholar
  9. 9.
    Burde G, Zieschang H (2003) Knots, 2nd edn. de Gruyter studies in mathematics, vol 5. Walter de Gruyter, BerlinGoogle Scholar
  10. 10.
    Brylawski T (1982) The Tutte polynomial. Part 1: General theory. In: Barlotti A (ed) Matroid theory and its applications, proceedings of the third international mathematical summer center (C.I.M.E. 1980), pp 125–275Google Scholar
  11. 11.
    Brylawski T, Oxley J (1992) The Tutte polynomial and its applications. In: White N (ed) Matroid applications, encyclopedia of mathematics and its applications. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Carter J, Kamada S, Saito M (2002) Stable equivalences of knots on surfaces and virtual knot cobordisms. J Knot Theory Ramifications 11:311–322MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Champanerkar A, Kofman I (2009) Spanning trees and Khovanov homology. Proc Amer Math Soc 137:2157–2167MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Champanerkar A, Kofman I, Stoltzfus N (2007) Graphs on surfaces and Khovanov homology. Algebr Geom Topol 7:1531–1540MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Champanerkar A, Kofman I, Stoltzfus N (2011) Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial. Bull Lond Math Soc 43:972–984MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chmutov S (2009) Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial. J Combin Theory Ser B 99:617–638MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chmutov S, Pak I (2007) The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial. Mosc Math J 7:409–418MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chmutov S, Voltz J (2008) Thistlethwaite’s theorem for virtual links. J Knot Theory Ramifications 17:1189–1198MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Crowell R, Fox R (1977) Introduction to knot theory. In: Graduate texts in mathematics, vol 57. Springer, New YorkGoogle Scholar
  20. 20.
    Cotta-Ramusino P, Rinaldi M (1991) On the algebraic structure of link-diagrams on a 2-dimensional surface. Comm Math Phys 138:137–173MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dasbach O, Futer D, Kalfagianni E, Lin X-S, Stoltzfus N (2008) The Jones polynomial and graphs on surfaces. J Combin Theory Ser B 98:384–399MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dasbach O, Futer D, Kalfagianni E, Lin X-S, Stoltzfus N (2010) Alternating sum formulae for the determinant and other link invariants. J Knot Theory Ramifications 19:765–782MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dasbach O, Lowrance A (2011) Turaev genus, knot signature, and the knot homology concordance invariants. Proc Amer Math Soc 139:2631–2645MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Diestel R (2010) Graph theory. In: Graduate texts in mathematics, vol 173, 4th edn. Springer, HeidelbergGoogle Scholar
  25. 25.
    Dye H, Kauffman L (2009) Virtual crossing number and the arrow polynomial. J Knot Theory Ramifications 18:1335–1357MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ellis-Monaghan J, Merino C (2011) Graph polynomials and their applications I: the Tutte polynomial. In: Dehmer M (ed) Structural analysis of complex networks. Birkhauser, New York, pp 219–255CrossRefGoogle Scholar
  27. 27.
    Ellis-Monaghan J, Merino C (2011) Graph polynomials and their applications II: interrelations and interpretations. In: Dehmer M (ed) Structural analysis of complex networks. Birkhauser, New York, pp 257–292CrossRefGoogle Scholar
  28. 28.
    Ellis-Monaghan J, Moffatt I (2013) A Penrose polynomial for embedded graphs. Eur J Combin 34:424–445MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ellis-Monaghan J, Moffatt I. Evaluations of topological Tutte polynomials. arXiv:1108.3321 (preprint)Google Scholar
  30. 30.
    Ellis-Monaghan J, Moffatt I (2012) Twisted duality and polynomials of embedded graphs. Trans Amer Math Soc 364:1529–1569MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ellis-Monaghan J, Sarmiento I (2001) Medial graphs and the Penrose polynomial. Congr Numer, vol 150, pp 211–222MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ellis-Monaghan J, Sarmiento I (2002) Generalized transition polynomials. Congr Numer 155:57–69MathSciNetzbMATHGoogle Scholar
  33. 33.
    Ellis-Monaghan J, Sarmiento I. A duality relation for the topological Tutte polynomial, talk at the AMS eastern section meeting special session on graph and matroid invariants, bard college.\#Research. Accessed 10 Sept 2005
  34. 34.
    Ellis-Monaghan J, Sarmiento I (2011) A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan. Eur J Combin 32:782–794MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Fox R, Artin E (1948) Some wild cells and spheres in three-dimensional space. Ann Math 49:979–990MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Fox R (1949) A remarkable simple closed curve. Ann Math 50:264–265CrossRefzbMATHGoogle Scholar
  37. 37.
    Freyd P, Hoste J, Lickorish W,  Millett K,  Ocneanu A,  Yetter D (1985) A new polynomial invariant of knots and links. Bull Amer Math Soc (N.S.) 12:239–246Google Scholar
  38. 38.
    Futer D, Kalfagianni E, Purcell J (2008) Dehn filling, volume, and the Jones polynomial. J Differ Geom 78:429–464MathSciNetzbMATHGoogle Scholar
  39. 39.
    Futer D, Kalfagianni E, Purcell J (2009) Symmetric links and Conway sums: volume and Jones polynomial. Math Res Lett 16:233–253MathSciNetzbMATHGoogle Scholar
  40. 40.
    Goussarov M, Polyak M, Viro O (2000) Finite-type invariants of classical and virtual knots. Topology 39:1045–1068MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Gross J, Tucker T (1987) Topological graph theory, Wiley-Interscience, New YorkzbMATHGoogle Scholar
  42. 42.
    Gurau R (2010) Topological graph polynomials in colored group field theory. Ann Henri Poincaré 11:565–584MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Huggett S, Moffatt I (2011) Expansions for the Bollobás-Riordan and Tutte polynomials of separable ribbon graphs. Ann Comb 15:675–706MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Huggett S, Moffatt I. Bipartite partial duals and circuits in medial graphs, Combinatorica (in press) arXiv:1106.4189Google Scholar
  45. 45.
    Huggett S, Moffatt I, Virdee N (2012) On the Seifert graphs of link diagrams and their parallels. Math Proc Cambridge Philos Soc 153:123–145MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Hoste J, Przytycki J (1989) An invariant of dichromatic links. Proc Amer Math Soc 105:1003–1007MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Inoue K, Kaneto T (1994) A Jones type invariant of links in the product space of a surface and the real line. J Knot Theory Ramifications 3:153–161MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Jaeger F (1988) Tutte polynomials and link polynomials. Proc Amer Math Soc 103:647–654MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Jaeger F (1988) On Tutte polynomials and cycles of plane graphs. J Combin Theory Ser B 44:127–146MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Jaeger F (1990) On transition polynomials of 4-regular graphs. In: Hahn G. et al (eds) Cycles and rays (Montreal, PQ, 1987). NATO advanced science institutes series c: mathematical and physical sciences, vol 301. Kluwer Academic, Dordrecht, pp 123–150CrossRefGoogle Scholar
  51. 51.
    Jin X, Zhang F (2012) The Homfly and dichromatic polynomials. Proc Amer Math Soc 140:1459–1472MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Jones V (1985) A polynomial invariant for knots via von Neumann algebras. Bull Amer Math Soc 12:103–111MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Kauffman L (1987) State models and the Jones polynomial. Topology 26:395–407MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Kauffman L (1990) An invariant of regular isotopy. Trans Amer Math Soc 312:417–471MathSciNetCrossRefGoogle Scholar
  55. 55.
    Kauffman L (1999) Virtual knot theory. Eur J Combin 20:663–690MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Kauffman L (2000) A survey of virtual knot theory. In: Knots in Hellas ’98 (Delphi), Ser. Knots Everything, vol 24. World Science, River Edge, pp 143–202Google Scholar
  57. 57.
    Kauffman L (2012) Introduction to virtual knot theory. J. Knot Theory Ramifications 21:1240007MathSciNetCrossRefGoogle Scholar
  58. 58.
    Kauffman L, Manturov V (2006) Virtual knots and links, Tr. Mat. Inst. Steklova Geom. Topol., Diskret. Geom. i Teor. Mnozh., translation in Proc. Steklov Inst. Math. 25:114–133; 252:104–121.Google Scholar
  59. 59.
    Kamada N (2002) On the Jones polynomials of checkerboard colorable virtual links. Osaka J Math 39:325–333MathSciNetzbMATHGoogle Scholar
  60. 60.
    Kamada N (2004) Span of the Jones polynomial of an alternating virtual link. Algebr Geom Topol 4:1083–1101MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Korn M, Pak I. Combinatorial evaluations of the Tutte polynomial (preprint)Google Scholar
  62. 62.
    Kotzig A (1968) Eulerian lines in finite 4-valent graphs and their transformations. Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic, New York, pp 219–230Google Scholar
  63. 63.
    Krajewski T, Rivasseau V, Vignes-Tourneret F (2011) Topological graph polynomials and quantum field theory. Part II: Mehler kernel theories. Ann Henri Poincaré 12:1–63MathSciNetCrossRefGoogle Scholar
  64. 64.
    Lando S, Zvonkin A (2004) Graphs on surfaces and their applications, encyclopaedia of mathematical sciences, low-dimensional topology, II. vol 141. Springer, BerlinCrossRefGoogle Scholar
  65. 65.
    Las Vergnas M (1981) Eulerian circuits of 4-valent graphs imbedded in surfaces. In: Algebraic methods in graph theory, vols I, II (Szeged, 1978), vol 25. Colloquia Mathematica Societatis Jnos Bolyai, North-Holland, Amsterdam, New York, pp 451–477Google Scholar
  66. 66.
    Las Vergnas M (1978) Sur les activités des orientations d’une géométrie combinatoire. In: colloque mathématiques discrètes: codes et hypergraphes (Brussels, 1978). cahiers centre Études rech Opér 20:293–300Google Scholar
  67. 67.
    Las Vergnas M (1980) On the Tutte polynomial of a morphism of matroids. Ann Discrete Math 8:7–20MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Lickorish W 1997 An introduction to knot theory. In: Graduate texts in mathematics, vol 175. Springer, New YorkGoogle Scholar
  69. 69.
    Lieberum J (2002) Skein modules of links in cylinders over surfaces. Int J Math Math Sci 32:515–554MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Loebl M, Moffatt I (2008) The chromatic polynomial of fatgraphs and its categorification. Adv Math 217:1558–1587MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Lowrance A (2008) On knot Floer width and Turaev genus. Algebr Geom Topol 8:1141–1162MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Manturov V (2004) Knot theory. Chapman & Hall/CRC, Boca RatonCrossRefzbMATHGoogle Scholar
  73. 73.
    Massey W (1977) Algebraic topology: an introduction. In: Graduate texts in mathematics, vol 56. Springer, New YorkGoogle Scholar
  74. 74.
    Milnor J (1964) Most knots are wild. Fund Math 54:335–338MathSciNetzbMATHGoogle Scholar
  75. 75.
    Moffatt I (2008) Knot invariants and the Bollobás-Riordan polynomial of embedded graphs. Eur J Combin 29: 95–107MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Moffatt I (2010) Partial duality and Bollobás and Riordan’s ribbon graph polynomial. Discrete Math 310:174–183MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Moffatt I (2011) Unsigned state models for the Jones polynomial. Ann Comb 15: 127–146MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Moffatt I (2011) A characterization of partially dual graphs. J Graph Theory 67:198–217MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Moffatt I (2012) Partial duals of plane graphs, separability and the graphs of knots. Algebr Geom Topol 12:1099–1136MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Moffatt I (2013) Separability and the genus of a partial dual. Eur J Combin 34:355–378MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Mohar B, Thomassen C (2001) Graphs on surfaces (Johns Hopkins studies in the mathematical sciences). John Hopkins University Press, BaltimoreGoogle Scholar
  82. 82.
    Nelson S (2001) Unknotting virtual knots with Gauss diagram forbidden moves. J Knot Theory Ramifications 10:931–935MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Oxley J, Welsh D (1979) The Tutte polynomial and percolation. In: Bondy JA, Murty USR (eds) Graph theory and related topics. Academic, LondonGoogle Scholar
  84. 84.
    Penrose R (1971) Applications of negative dimensional tensors, combinatorial mathematics and its applications. In: Proceedings of the conference held in Oxford in 1969. Academic, London, pp 221–244Google Scholar
  85. 85.
    Polyak M (2010) Minimal generating sets of Reidemeister moves. Quantum Topol 1:399–411MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Przytycki J (1999) Fundamentals of Kauffman bracket skein modules. Kobe J Math 16:45–66MathSciNetzbMATHGoogle Scholar
  87. 87.
    Przytycki J, Traczyk P (1988) Invariants of links of Conway type. Kobe J Math 4:115–139MathSciNetGoogle Scholar
  88. 88.
    Rolfsen D (1976) Knots and links. Mathematics lecture series, No. 7. Publish or Perish, Berkeley, CaliforniaGoogle Scholar
  89. 89.
    Tanasa A (2011) Generalization of the Bollobás-Riordan polynomial for tensor graphs. J Math Phys 52:073514MathSciNetCrossRefGoogle Scholar
  90. 90.
    Tanasa A (2012) Some combinatorial aspects of quantum field theory. Seminaire Lotharingien de Combinatoire, B65gGoogle Scholar
  91. 91.
    Tanasa A (2012) Multi-orientable group field theory. J Phys A: Math Theor 45:165401MathSciNetCrossRefGoogle Scholar
  92. 92.
    Thistlethwaite M (1987) A spanning tree expansion of the Jones polynomial. Topology 26:297–309MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Traldi L (1989) A dichromatic polynomial for weighted graphs and link polynomials. Proc Amer Math Soc 106:279–286MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Turaev V (1990) The Conway and Kauffman modules of the solid torus. J Soviet Math 52:2799–2805MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Turaev V (1987) A simple proof of the Murasugi and Kauffman theorems on alternating links. Enseign Math 33:203–225MathSciNetzbMATHGoogle Scholar
  96. 96.
    Vignes-Tourneret F (2009) The multivariate signed Bollobás-Riordan polynomial. Discrete Math 309:5968–5981MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    Vignes-Tourneret F (2011) Non-orientable quasi-trees for the Bollobás-Riordan polynomial. Eur J Combin 32: 510–532MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    West D (1996) Introduction to graph theory (2nd edn). Prentice Hall, Upper Saddle RiverGoogle Scholar
  99. 99.
    Widmer T (2009) Quasi-alternating Montesinos links. J Knot Theory Ramifications 18: 1459–1469MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    Wilson S (1979) Operators over regular maps. Pacific J Math 81:559–568MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Joanna A. Ellis-Monaghan, Iain Moffatt 2013

Authors and Affiliations

  • Joanna A. Ellis-Monaghan
    • 1
  • Iain Moffatt
    • 2
  1. 1.Department of MathematicsSaint Michael’s CollegeColchesterUSA
  2. 2.Department of MathematicsRoyal Holloway University of LondonEgham, SurreyUK

Personalised recommendations