Skip to main content

First Principle Transport Modeling in Fusion Plasmas: Critical Issues for ITER

  • Chapter
  • First Online:
  • 1381 Accesses

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 5))

Abstract

Tokamaks aim at confining hot plasmas by means of strong magnetic fields in view of reaching a net energy gain through fusion reactions. Plasma confinement turns out to be governed by small-scale instabilities which saturate nonlinearly and lead to turbulent fluctuations of a few percent. This paper recalls the basic equations for modeling such weakly collisional plasmas. It essentially relies on the kinetic, or more precisely the gyrokinetic, description, although some attempts are made to incorporate some of the kinetic properties, namely, wave-particle resonances, in fluid models by means of collisionless closures. Three main types of micro-instabilities are detailed and studied linearly, namely, drift waves, interchange, and bump-on-tail. Finally, some of the main critical issues in turbulence modeling are addressed: flux-driven versus gradient-driven models, the subsequent impact of mean profile relaxation on turbulent transport dynamics, and the role of large-scale flows, either at equilibrium or turbulence driven, on turbulence saturation and on the possible triggering of transport barriers. The significant progress in understanding and prediction of turbulent transport in tokamak plasmas thanks to first-principle simulations is highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice that transverse drifts can also be derived within the fluid framework in the same adiabatic limit. At first order in the small ρ ∕ R parameter, with R the curvature—and or the gradient— length of B, they read: \(\mathbf{u}_{\perp }^{(1)} \equiv \mathbf{u}_{E} + \mathbf{u}_{s}^{{\ast}} = \frac{\mathbf{E}\times \mathbf{B}} {{B}^{2}} + \frac{\mathbf{B}\times \nabla p_{s}} {n_{s}e_{s}{B}^{2}}\). The first component, the electric drift u E , is also a particle drift. The latter one is not, since it depends on the pressure, which is a fluid quantity only. It is known as the diamagnetic drift u s  ∗ . It is the same order of magnitude for ions and electrons. Since it depends on the charge of the species, it carries transverse current. The second-order fluid drift is the so-called polarization drift. It is often approximated as follows: \(\mathbf{u}_{\perp }^{(2)} \equiv \mathbf{u}_{pol,\,s} = - \frac{m_{s}} {e_{s}{B}^{2}} \Big[\partial _{t} + (\mathbf{u}_{E} + \mathbf{u}_{s}^{{\ast}} + \mathbf{u}_{\parallel }).\nabla \Big]\nabla _{\perp }\phi\).

  2. 2.

    Notice that such a result intrinsically derives from the fast motion of the electrons in the parallel direction due to their small inertia. Therefore, only those modes which exhibit some structure in the parallel direction (i.e., such that k  ∥ ≠0) are subject to an adiabatic response of the electrons.

  3. 3.

    The ion density fluctuation δn i comes from the continuity equation, namely, \(\partial _{t}\delta n_{i} + u_{Er}\mathrm{d}n_{eq}/\mathrm{d}r = 0\), with \(u_{Er} = -\partial _{y}\phi /B\). For the considered plane wave, this reads as follows: \(-i\omega \delta n_{i} = i(k_{y}/B)(\mathrm{d}n_{eq}/\mathrm{d}r)\,\delta \phi\). The quasi-neutrality constraint \(\delta n_{i} =\delta n_{e}\) then leads to the result. See also Sect. 5.3.2

  4. 4.

    Indeed, it corresponds to 2 centered Maxwellians, for which Landau damping only is expected.

References

  1. X. Garbet (Guest Editor), Turbulent Transport in Fusion Magnetised Plasmas, vol 6 (C.R. Physique, Amsterdam, 2006), 573–699

    Google Scholar 

  2. G.W. Hammett, F.W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)

    Article  Google Scholar 

  3. M.A. Beer, Ph.D. thesis, Princeton University (1995)

    Google Scholar 

  4. B. Snyder, G.W. Hammett, W. Dorland, Phys. Plasmas 4, 3974 (1997)

    Article  MathSciNet  Google Scholar 

  5. H. Sugama, T.-H. Watanabe, W. Horton, Phys. Plasmas 10, 726 (2003)

    Article  Google Scholar 

  6. T. Passot, P.L. Sulem, Phys. Plasmas 10, 3906 (2003)

    Article  MathSciNet  Google Scholar 

  7. T. Chust, G. Belmont, Phys. Plasmas 13, 012506 (2006)

    Article  MathSciNet  Google Scholar 

  8. P. Bertrand, M.R. Feix, Phys. Lett. 28A, 68 (1968)

    Google Scholar 

  9. P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, X. Garbet, P. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)

    Article  Google Scholar 

  10. Y. Sarazin, G. Dif-Pradalier, D. Zarzoso, X. Garbet, Ph. Ghendrih, V. Grandgirard, Plasma Phys. Control. Fusion 51, 115003 (2009)

    Article  Google Scholar 

  11. L.D. Landau (1946), “On the vibrations of the electronic plasma”, in Collected Papers of L.D. Landau, vol 61, ed. by D. Ter Haar (Pergamon Press, Oxford, 1965), p. 445

    Google Scholar 

  12. B.D. Fried, S.D. Conte, The Plasma Dispersion Function (Academic Press, New York NY, 1961)

    Google Scholar 

  13. A.M. Dimits et al., Phys. Plasmas 7, 969 (2000)

    Article  Google Scholar 

  14. Y. Sarazin, V. Grandgirard, G. Dif-Pradalier, E. Fleurence, X. Garbet, Ph Ghendrih, P. Bertrand, N. Besse, N. Crouseilles, E. Sonnendrücker, G. Latu, E. Violard, Plasma Phys. Control Fusion 48, B179–B188 (2006)

    Google Scholar 

  15. A.J. Brizard, T.S. Hahm, Rev. Mod. Phys. 79, 421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Grandgirard ans Y. Sarazin, to appear in Panoramas et Synthèses, Société Mathématique de France (2013)

    Google Scholar 

  17. A. Hasegawa, M. Wakatani, Phys. Rev. Lett. 50, 682 (1983)

    Article  Google Scholar 

  18. M. Wakatani, A. Hasegawa, Phys. Fluids 27, 611 (1984)

    Article  MATH  Google Scholar 

  19. D. Zarzoso, X. Garbet, Y. Sarazin, R. Dumont, V. Grandgirard, Phys. Plasmas 19, 022102 (2012)

    Article  Google Scholar 

  20. P.H. Diamond, T.S. Hahm, Phys. Plasmas 2, 3640 (1995)

    Article  Google Scholar 

  21. Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, G. Dif-Pradalier, X. Garbet, Ph. Ghendrih, G. Latu, A. Strugarek, Nucl. Fusion 50, 054004 (2010)

    Article  Google Scholar 

  22. V. Grandgirard et al., Commun. Nonlinear Sci. Numer. Simulation 13, 81–87 (2008)

    Article  MATH  Google Scholar 

  23. G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C.S. Chang, Phys. Rev. E 82, 025401(R) (2010)

    Google Scholar 

  24. L.N. Howard, R. Krishnamurti, J. Fluid Mech. 170, 385–410 (1986)

    Article  MATH  Google Scholar 

  25. H. Biglari, P. Diamond, P. Terry, Phys. Fluids B 2, 1 (1990)

    Article  Google Scholar 

  26. T.S. Hahm, K.H. Burrell, Phys. Plasmas 2, 1648 (1995)

    Article  Google Scholar 

  27. R.E Waltz, G.D. Kerbel, J. Milovich, Phys. Plasmas 1, 2229 (1994)

    Google Scholar 

  28. A. Fujisawa, K. Itoh, H. Iguchi et al., Phys. Rev. Lett. 93, 165002 (2004)

    Article  Google Scholar 

  29. P.H. Diamond, M.N. Rosenbluth, F.L. Hinton et al., Plasma Physics Control Nuclear Fusion Research (IAEA, Vienna, 1998)

    Google Scholar 

  30. Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, P.H. Diamond, Phys. Rev. Lett. 83, 3645 (1999)

    Article  Google Scholar 

  31. M.N. Rosenbluth, F.L. Hinton, Phys. Rev. Lett. 80, 724 (1998)

    Article  Google Scholar 

  32. F.L. Hinton, M.N. Rosenbluth, Plasma Phys. Controlled Fusion 41, A653 (1999)

    Article  Google Scholar 

  33. Y. Sarazin, V. Grandgirard, G. Dif-Pradalier et al., Phys. Plasmas 13, 092307 (2006)

    Article  Google Scholar 

  34. F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982)

    Article  Google Scholar 

  35. R. Moyer, K. Burrell, T. Carlstrom et al., Phys. Plasmas 2, 2397 (1995)

    Article  Google Scholar 

  36. H. Zohm, Plasma Phys. Control. Fusion 38, 105 (1996)

    Article  Google Scholar 

  37. J.W. Connor, Plasma Phys. Control. Fusion 40, 191 (1998)

    Article  Google Scholar 

  38. P.A. Politzer, Phys. Rev. Lett. 84, 1192 (2000)

    Article  Google Scholar 

  39. Y. Sarazin, M. Bécoulet, P. Beyer, X. Garbet, Ph. Ghendrih, T.C. Hender, E. Joffrin, X. Litaudon, P.J. Lomas, G.F. Matthews, V. Parail, G. Saibene, R. Sartori, Plasma Phys. Control. Fusion 44, 2445 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

It is my pleasure to acknowledge colleagues and friends who have most contributed to this paper through numerous enlightening discussions and common work on turbulence and transport for many years: X. Garbet and Ph. Ghendrih, P. Beyer, P.H. Diamond, G. Dif-Pradalier, and V. Grandgirard. Many thanks as well to the students J. Abiteboul, A. Strugarek, D. Zarzoso, and T. Cartier-Michaud. Last but not least, I wish to acknowledge C. Passeron for her precious support on numerical issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanick Sarazin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarazin, Y. (2013). First Principle Transport Modeling in Fusion Plasmas: Critical Issues for ITER. In: Leoncini, X., Leonetti, M. (eds) From Hamiltonian Chaos to Complex Systems. Nonlinear Systems and Complexity, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6962-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6962-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6961-2

  • Online ISBN: 978-1-4614-6962-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics