Skip to main content

On the Nonlinear Electron Vibrations in a Plasma

  • Chapter
  • First Online:
From Hamiltonian Chaos to Complex Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 5))

  • 1377 Accesses

Abstract

Many applications, including the control of parametric instabilities detrimental for inertial confinement fusion, which motivates the present work, require an accurate kinetic description of the electron vibrations in a plasma, henceforth called electron plasma waves. This issue actually gave rise to a countless number of papers, even beyond the plasma physics community, due to some fascinating effects like Landau damping, which is the most famous example of collisionless dissipation. However, very few theoretical results are available when the wave is so intense that it deeply traps a significant fraction of the electrons in its potential, and these results are mostly restricted to academic situations. By contrast, in this chapter we provide a description of nearly monochromatic electron plasma waves valid from the linear to the strongly nonlinear regime, using hypotheses general enough to address a real physics situation like stimulated Raman scattering in a fusion plasma. Completely new theoretical results are obtained regarding the collisionless dissipation and the dispersion relation of an electron plasma wave, whose accuracy was tested against very careful kinetic simulations of stimulated Raman scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions, 10th edn. (Dover, New York, 1972), pp. 587–626

    Google Scholar 

  2. G. Belmont, F. Mottez, T. Chust, S. Hess, Phys. Plasmas 15, 052310 (2008)

    Article  Google Scholar 

  3. D. Bénisti, L. Gremillet, Phys. Plasmas 14, 042304 (2007)

    Article  Google Scholar 

  4. D. Bénisti, D.J. Strozzi, L. Gremillet, Phys. Plasmas 15, 030701 (2008)

    Article  Google Scholar 

  5. D. Bénisti, O. Morice, L. Gremillet, D.J. Strozzi, Phys. Rev. Lett. 103, 155002 (2009)

    Article  Google Scholar 

  6. D. Bénisti, O. Morice, L. Gremillet, E. Siminos, D.J. Strozzi, Phys. Plasmas 17, 102311 (2010)

    Article  Google Scholar 

  7. D. Bénisti, N.A.Y. Yampolsky, N.J. Fisch, Comparisons between nonlinear kinetic modelings of simulated Raman scattering using envelope equations. Phys. Plasmas 19, 013110 (2012)

    Article  Google Scholar 

  8. D. Bénisti, O. Morice, L. Gremillet, A. Friou, E. Lefebvre, Nonlinear kinetic modeling of stimulated Raman scattering in a multidimensional geometry. Accepted for publication to Phys. Plasmas as an invited paper of the APS/DPP meeting. Phys. Plasmas 19, 056301 (2012)

    Google Scholar 

  9. S. Brunner, E.J. Valeo, Phys. Rev. Lett. 93, 145003 (2004)

    Article  Google Scholar 

  10. J.R. Cary, D.F. Escande, J.L. Tennyson, Phys. Rev. A 34, 4256–4275 (1986)

    Article  Google Scholar 

  11. R.L. Dewar, Phys. Fluids 16, 431 (1973)

    Article  Google Scholar 

  12. J.E. Fahlen, B.J. Winjum, T. Grismayer, W.B. Mori, Phys. Rev. Lett. 102, 245002 (2009)

    Article  Google Scholar 

  13. J.E. Fahlen, B.J. Winjum, T. Grismayer, W.B. Mori, Phys. Rev. E 83, 045401(R) (2011)

    Google Scholar 

  14. H. Goldstein, Classical Mechanics (Addison-Wesley, Cambridge, 1951)

    MATH  Google Scholar 

  15. B.D. Fried, R.W. Gould, Phys. Fluids 4, 139–147 (1961)

    Article  MathSciNet  Google Scholar 

  16. R.J.D. Raju, A. Sen, Phys. Plasmas 13, 082507 (2006)

    Article  Google Scholar 

  17. J.P. Holloway, J.J. Dorning, Phys. Rev. A 44, 3856–3868 (1991)

    Article  Google Scholar 

  18. V.B. Krapchev, A.K. Ram, Phys. Rev. A 22, 1229–1242 (1980)

    Article  MathSciNet  Google Scholar 

  19. W.L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Company, Inc., Redwood City, 1988)

    Google Scholar 

  20. L.D. Landau, Zh. Eksp. Teor. Fiz. 16, 574–596 (1946)

    MATH  Google Scholar 

  21. R.R. Lindberg, A.E. Charman, J.S. Wurtele, Phys. Plasmas 14, 122013 (2007)

    Article  Google Scholar 

  22. J.D. Lindl, P. Amendt, R.L. Berger, S. Gail Glendinning, S.H. Glenzer, S.W. Haan, R.L. Kauffman, O.L. Landen, L.J. Suter, Phys. Plasmas 11, 339 (2004)

    Article  Google Scholar 

  23. V.M. Malkin, G. Shvets, N.J. Fisch, Phys. Rev. Lett. 82, 4448 (1999)

    Article  Google Scholar 

  24. G.J. Morales, T.M. O’Neil, Phys. Rev. Lett. 28, 417–420 (1972)

    Article  Google Scholar 

  25. C. Mouhot, C. Villani, Acta. Math. 207, 29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. OŃeil, Phys. Fluids 8, 2255–2262 (1965)

    Article  MathSciNet  Google Scholar 

  27. H.A. Rose, D.A. Russell, Phys. Plasmas 8, 4784–4799 (2001)

    Article  Google Scholar 

  28. D.J. Strozzi, E.A. Williams, A.B. Langdon, A. Bers, Phys. Plasmas 14, 013104 (2007)

    Article  Google Scholar 

  29. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  30. N.A. Yampolsky, N.J. Fisch, Phys. Plasmas 16 072104 (2009)

    Article  Google Scholar 

  31. L. Yin, B.J. Albright, K.J. Bowers, W. Daughton, H.A. Rose, Phys. Rev. Lett. 99, 265004 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

It is a pleasure to acknowledge Laurent Gremillet and Olivier Morice for extensive discussions, as well as David Strozzi for his numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Bénisti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bénisti, D. (2013). On the Nonlinear Electron Vibrations in a Plasma. In: Leoncini, X., Leonetti, M. (eds) From Hamiltonian Chaos to Complex Systems. Nonlinear Systems and Complexity, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6962-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6962-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6961-2

  • Online ISBN: 978-1-4614-6962-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics