Skip to main content

Polish Spaces and Analytic Sets

  • Chapter
  • First Online:
Measure Theory

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 17k Accesses

Abstract

The Borel subsets of a complete separable metric space have a number of interesting and useful characteristics. For example, two uncountable Borel subsets of complete separable metric spaces are necessarily Borel isomorphic, in the sense that there is a Borel measurable bijection from one to the other whose inverse is also Borel measuable. A related result says that if we have a Borel measurable injection from one complete separable metric space to another, then the image under this map of each Borel subset of the domain is Borel. If the function involved here is Borel but not necessarily injective, then the images of Borel sets are measurable for every finite Borel measure on the range space.

This Chapter is devoted to proving such results and to showing the context in which they arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let {Y α } be an indexed collection of sets such that

    1. (a)

      for each α the set Y α has the same cardinality as the set X α , and

    2. (b)

      \(Y _{\alpha _{1}}\) and \(Y _{\alpha _{2}}\) are disjoint if α 1α 2

    (for instance, one might let Y α be X α ×{α}). The disjoint union of the X α ’s is defined to be the union of the Y α ’s. (One generally thinks of the Y α ’s as being identified with the corresponding X α ’s.)

  2. 2.

    Suppose that X and Y are topological spaces. A function f : X → Y is open if for each open subset U of X the set f(U) is an open subset of Y.

  3. 3.

    Recall that each ordinal α can be written in a unique way in the form \(\alpha =\beta +n\), where β is either zero or a limit ordinal and where n is finite. The ordinal α is called even if n is even and odd if n is odd.

  4. 4.

    We will see (Theorem  8.3.7 ) that the injectivity and measurability of f imply that \(B \in \mathcal{B}(Y )\).

  5. 5.

    Of course \(\mathcal{A}_{X_{0}}\) and \(\mathcal{B}_{Y _{0}}\) are the traces of \(\mathcal{A}\) and \(\mathcal{B}\) on X 0 and Y 0 (see Exercise 1.5.11).

  6. 6.

    See Exercise 5 for a proof of Theorem 8.3.6 that does not depend on Proposition 8.2.13 or 8.3.5.

  7. 7.

    A subset of a Hausdorff space is relatively compact if its closure is compact.

  8. 8.

    This example assumes more Banach space theory than is developed in this book.

  9. 9.

    Suppose that X is an infinite-dimensional Banach space. If the weak topology on X is metrizable, then there is an infinite sequence {f i } in X  ∗  such that each f in X  ∗  is a linear combination of f 1, …, f n for some n (choose {f i } so that for each weakly open neighborhood U of 0 there is a positive integer n and a positive number ε such that x ∈ U holds whenever x satisfies | f i (x) |  < ε for i = 1, …, n; then use Lemma V.3.10 in [42]). Thus X  ∗  is the union of a sequence of finite-dimensional subspaces of X  ∗ . Since this is impossible (use Exercise 3.5.6, Corollary IV.3.2 in [42], and the Baire category theorem), we have a contradiction, and the weak topology on X is not metrizable. A similar argument shows that the weak ∗  topology on X  ∗  is not metrizable.

References

  1. Blackwell, D.: A Borel set not containing a graph. Ann. Math. Statist. 39, 1345–1347 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blackwell, D.: On a class of probability spaces. In: Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, vol. II, pp. 1–6. University of California Press, Berkeley (1956)

    Google Scholar 

  3. Bourbaki, N.: General Topology, Part 2. Addison-Wesley, Reading (1966)

    Google Scholar 

  4. Cartier, P.: Processus aléatoires généralisés. In: Séminaire Bourbaki, 1963–1964, exposé 272. Benjamin, New York (1966)

    Google Scholar 

  5. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Google Scholar 

  6. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953–1954)

    Google Scholar 

  7. Christensen, J.P.R.: Topology and Borel Structure. North-Holland Mathematics Studies, vol. 10. North-Holland, Amsterdam (1974)

    Google Scholar 

  8. Dellacherie, C.: Quelques exemples familiers, en probabilités, d’ensembles analytiques non boréliens. In: Séminaire de Probabilités XII. Lecture Notes in Mathematics, vol. 649, pp. 746–756. Springer, Berlin (1978)

    Google Scholar 

  9. Dellacherie, C.: Une démonstration du théorème de Souslin-Lusin. In: Séminaire de Probabilités VII. Lecture Notes in Mathematics, vol. 321, pp. 48–50. Springer, Berlin (1973)

    Google Scholar 

  10. Dudley, R.M.: On measurability over product spaces. Bull. Amer. Math. Soc. 77, 271–274 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dunford, N., Schwartz, J.T.: Linear Operators. Part I: General Theory. Pure and Applied Mathematics, vol. VII. Interscience, New York (1958)

    Google Scholar 

  12. Hoffmann-Jørgensen, J.: The Theory of Analytic Spaces. Various Publications Series, No. 10. Aarhus Universitet, Matematisk Institut, Aarhus (1970)

    Google Scholar 

  13. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  14. Kuratowski, K.: Topology, vol. 1. Academic, New York (1966)

    Google Scholar 

  15. Kuratowski, K., Mostowski, A.: Set Theory. Studies in Logic and the Foundations of Mathematics, vol. 86. North-Holland, Amsterdam (1976)

    Google Scholar 

  16. Ljapunow, A.A., Stschegolkow, E.A., Arsenin, W.J.: Arbeiten zur deskriptiven Mengenlehre. VEB Deutscher Verlag der Wissenschaften, Berlin (1955)

    MATH  Google Scholar 

  17. Mackey, G.W.: Borel structure in groups and their duals. Trans. Amer. Math. Soc. 85, 134–165 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mazurkiewicz, S.: Über die Menge der differenzierbaren Funktionen. Fund. Math. 27, 244–249 (1936)

    Google Scholar 

  19. Novikoff, P.: Sur les fonctions implicites mesurables B. Fund. Math. 17, 8–25 (1931)

    Google Scholar 

  20. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Probability and Mathematical Statistics, vol. 3. Academic, New York (1967). Reprinted by AMS Chelsea Publishing, 2005

    Google Scholar 

  21. Rogers, C.A. (ed.): Analytic Sets. Academic, London (1980)

    MATH  Google Scholar 

  22. Schwartz, L.: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press, London (1973)

    MATH  Google Scholar 

  23. Srivastava, S.M.: A Course on Borel Sets. Springer, New York (1998)

    Book  MATH  Google Scholar 

  24. Stone, A.H.: Analytic sets in non-separable metric spaces. In: Rogers, C.A. (ed.) Analytic Sets, pp. 471–480. Academic, London (1980)

    Google Scholar 

  25. Wagner, D.H.: Survey of measurable selection theorems. SIAM. J. Control Optim. 15, 859–903 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohn, D.L. (2013). Polish Spaces and Analytic Sets. In: Measure Theory. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6956-8_8

Download citation

Publish with us

Policies and ethics