Swarm Intelligence

  • Daniel Merkle
  • Martin Middendorf


The complex and often coordinated behavior of swarms fascinates not only biologists but also computer scientists. Bird flocking and fish schooling are impressive examples of coordinated behavior that emerges without central control. Social insect colonies show complex problem-solving skills arising from the actions and interactions of nonsophisticated individuals.


Particle Swarm Optimization Particle Swarm Optimization Algorithm Swarm Intelligence Total Weighted Tardiness Travel Salesperson Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alrashidi MR, El-Hawary ME (2009) A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput 13:913–918CrossRefGoogle Scholar
  2. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6:467–484CrossRefGoogle Scholar
  3. Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7:109–124CrossRefGoogle Scholar
  4. Bauer A, Bullnheimer B, Hartl RF, Strauss C (1999) An ant colony optimization approach for the single machine total tardiness problem. In: Proceedings of the CEC 1999, Washington, DC. IEEE, Piscataway, pp 1445–1450Google Scholar
  5. Blackwell TM, Bentley PJ (2002) Dynamic search with charged swarms. In: GECCO 2002, New York. Morgan Kaufmann, San Mateo, pp 19–26Google Scholar
  6. Blesa MJ, Blum C, Di Gaspero L, Roli A, Sampels M, Schaerf A (eds) (2009) In: 6th international workshop hybrid metaheuristics, Udine. LNCS 5818. Springer, BerlinGoogle Scholar
  7. Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2:353–373CrossRefGoogle Scholar
  8. Blum C, Sampels M (2002a) Ant colony optimization for FOP shop scheduling: a case study on different pheromone representations. In: Proceedings of the CEC 2002, Honolulu, pp 1558–1563Google Scholar
  9. Blum C, Sampels M (2002b) When model bias is stronger than selection pressure. In: Proceedings of the PPSN VII, Granada. LNCS 2439. Springer, Berlin, pp 893–902Google Scholar
  10. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New YorkGoogle Scholar
  11. Brits R, Engelbrecht AP, van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of the SEAL 2002, Singapore, pp 692–696Google Scholar
  12. Bullnheimer B, Hartl RF, Strauss CA (1999) New rank based version of the ant system: a computational study. Cent Eur J Oper Res Econ 7:25–38Google Scholar
  13. Christensen A, O’Grady R, Dorigo M (2009) From fireflies to fault tolerant swarms of robots. IEEE Trans Evol Comput 13:754–766CrossRefGoogle Scholar
  14. Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the CEC, Washington, DC. IEEE, Piscataway, pp 1951–1957Google Scholar
  15. Clerc M (2002) Think locally, act locally—a framework for adaptive particle swarm optimizers. IEEE J Evol Comput 3:1951–1957Google Scholar
  16. Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73CrossRefGoogle Scholar
  17. Cordón O, Fernandez I, Herrera F, Moreno L (2000) A new ACO model integrating evolutionary computation concepts: the best-worst ant system. In: Proceedings of the 2nd international workshop on ant algorithms, Brussels, pp 22–29Google Scholar
  18. del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12:171–195CrossRefGoogle Scholar
  19. Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the Argentine ant. J Insect Behav 32:159–168CrossRefGoogle Scholar
  20. Diwold K, Beekman M, Middendorf M (2011) Honeybee optimisation. In: Panigrahi BK et al (eds) Handbook of swarm intelligence—concepts, principles and application. Springer, Berlin, pp 295–328CrossRefGoogle Scholar
  21. Dorigo M (1992) Optimization, learning and natural algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di MilanoGoogle Scholar
  22. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344:243–278CrossRefGoogle Scholar
  23. Dorigo M, Di Caro G (1999) The ant colony optimization meta-heuristic. In: Corne D et al (eds) New ideas in optimization. McGraw-Hill, New York, pp 11–32Google Scholar
  24. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1:53–66CrossRefGoogle Scholar
  25. Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical report 91-016, Politecnico di MilanoGoogle Scholar
  26. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41CrossRefGoogle Scholar
  27. Dorigo M, Birattari M, Blum C, Clerc M, Stützle T, Winfield AFT (eds) (2008) In: Proceedings of the ANTS 2008, Brussels. LNCS 5217. Springer, BerlinGoogle Scholar
  28. Gambardella LM, Taillard E, Dorigo M (1999) Ant colonies for the quadratic assignment problem. J Oper Res Soc 50:167–176Google Scholar
  29. Goss S, Aron S, Deneubourg JL, Pasteels JM (1989) Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76:579–581CrossRefGoogle Scholar
  30. Guntsch M, Middendorf M (2002a) Applying population based ACO to dynamic optimization problems. In: Proceedings of the 3rd international workshop ANTS 2002, Brussels. LNCS 2463. Springer, Berlin, pp 111–122Google Scholar
  31. Guntsch M, Middendorf M (2002b) A population based approach for ACO. In: Proceedings of the EvoWorkshops 2002 on applications of evolutionary computing, Kinsale. LNCS 2279. Springer, Berlin, pp 72–81Google Scholar
  32. Gutjahr WJ (2011) Ant colony optimization: recent developments in theoretical analysis. In: Auger A, Doerr B (eds) Theory of randomized search heuristics. World Scientific, Singapore, pp 225–254CrossRefGoogle Scholar
  33. Handl J, Meyer B (2002) Improved ant-based clustering and sorting in a document retrieval interface. In: Merelo Guervos JJ et al (eds) Proceedings of the PPSN VII, Granada. LNCS 2439. Springer, Berlin, pp 913–923Google Scholar
  34. Janson S, Middendorf M (2005) A hierarchical particle swarm optimizer and its adaptive variant. IEEE Syst Man Cybern B 32:1272–1282CrossRefGoogle Scholar
  35. Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31:61–85CrossRefGoogle Scholar
  36. Kawamura H, Yamamoto M, Suzuki K, Ohucke A (2000) Multiple ant colonies algorithm based on colony level interactions. IEICE Trans Fundam 83A:371–379Google Scholar
  37. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of the CEC, Indianapolis, pp 303–308Google Scholar
  38. Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster analysis. In: Proceedings of the CEC, La Jolla, pp 1507–1512Google Scholar
  39. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, pp 1942–1948Google Scholar
  40. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. Proc Conf Syst Man Cybern 5:4104–4109. IEEE, PiscatawayGoogle Scholar
  41. Kennedy J, Eberhart RC (1999) The particle swarm: social adaption in information processing systems. In: Corne D et al (eds) New ideas in optimization. McGraw-Hill, New York, pp 379–387Google Scholar
  42. Kennedy J, Mendes R (2003) Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms. In: Proceedings of the IEEE international workshop on soft computing in industrial applications, New YorkGoogle Scholar
  43. Kennedy J, Shi Y (eds) (2009) In: Proceedings of the 2009 IEEE Swarm Intelligence Symposium, Nashville, IEEEGoogle Scholar
  44. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San FranciscoGoogle Scholar
  45. Ko P-C, Lin P-C (2004) A hybrid swarm intelligence based mechanism for earning forecast. In: Proceedings of the ICITA 2004, HarbinGoogle Scholar
  46. Krink T, Vesterstrøm JS, Riget J (2002) Particle swarm optimisation with spatial particle extension. In: Proceedings of the CEC 2002, Honolulu, pp 1474–1479Google Scholar
  47. Labella TH, Dorigo M, Deneubourg J-L (2006) Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Trans Auton Adapt Syst 1:4–25CrossRefGoogle Scholar
  48. Lumer ED, Faieta B (1994) Diversity and adaptation in populations of clustering ants. In: Proceedings of the SAB 1994, Brighton. MIT, Cambridge, pp 501–508Google Scholar
  49. Maniezzo V (1999) Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. Inf J Comput 11:358–369CrossRefGoogle Scholar
  50. Merkle D, Middendorf M (2002) Ant colony optimization with the relative pheromone evaluation method. In: Proceedings of the EvoWorkshops 2001, Como. LNCS 2279. Springer, Berlin, pp 325–333Google Scholar
  51. Merkle D, Middendorf M (2003a) On the behavior of ACO algorithms: studies on simple problems. In: Resende MGC, Pinho de Sousa J (eds) Metaheuristics: computer decision-making. Kluwer, Dordrecht, pp 465–480Google Scholar
  52. Merkle D, Middendorf M (2003b) An ant algorithm with global pheromone evaluation for scheduling a single machine. Appl Intell 18:105–111CrossRefGoogle Scholar
  53. Merkle D, Middendorf M (2005) On solving permutation scheduling problems with ant colony optimization. Int J Syst Sci 36:255–266CrossRefGoogle Scholar
  54. Merkle D, Middendorf M (2008) Swarm intelligence and signal processing. IEEE Signal Process Mag 25:152–158CrossRefGoogle Scholar
  55. Merkle D, Middendorf M, Schmeck H (2002) Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evol Comput 6:333–346CrossRefGoogle Scholar
  56. Michels R, Middendorf M (1999) An ant system for the shortest common supersequence problem. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York, pp 51–61Google Scholar
  57. Montgomery J, Randall M (2002) Anti-pheromone as a tool for better exploration of search space. In: Proceedings of the ANTS 2002, Brussels. LNCS 2463. Springer, Berlin, pp 100–110Google Scholar
  58. Oliveira SM, Hussin MS, Stützle T, Roli A, Dorigo M (2011) A detailed analysis of the population-based ant colony optimization algorithm for the TSP and the QAP. In: GECCO (Companion), Dublin, pp 13–14Google Scholar
  59. Parsopoulos KE, Vrahatis MN (2001) Modification of the particle swarm optimizer for locating all the global minima. In: Kurkova V et al (eds) Artificial neural networks and genetic algorithms. Springer, Berlin, pp 324–327CrossRefGoogle Scholar
  60. Parsopoulos KE, Tasoulis DK, Vrahatis MN (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED international conference on artificial intelligence and applications, InnsbruckGoogle Scholar
  61. Pedersen MEH, Chipperfield AJ (2010) Simplifying particle swarm optimization. Appl Soft Comput 10:618–628CrossRefGoogle Scholar
  62. Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 1:1–10CrossRefGoogle Scholar
  63. Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer—the ARPSO. Technical report no 2002-02, University of AarhusGoogle Scholar
  64. Ritscher T, Helwig S, Wanka R (2010) Design and experimental evaluation of multiple adaptation layers in self-optimizing particle swarm optimization. In: Proceedings of the CEC 2010, Barcelona, pp 1–8Google Scholar
  65. Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and applications. Int J Comput Theor Eng 1:1793–8201Google Scholar
  66. Stützle T, Hoos H (1997) Improvements on the ant system: introducing MAX(MIN) ant system. In: Proceedings of the international conference on artificial neutral networks and genetic algorithms. Springer, Berlin, pp 245–249Google Scholar
  67. Stützle T, Hoos H (2000) MAX-MIN ant system. Future Gener Comput Syst J 16:889–914CrossRefGoogle Scholar
  68. Stützle T, den Besten M, Dorigo M (2000) Ant colony optimization for the total weighted tardiness problem. In: Deb et al (eds) Proceedings of the PPSN-VI, Paris. LNCS 1917. Springer, Berlin, pp 611–620Google Scholar
  69. Sumpter DJT (2009) Collective animal behavior. Princeton University Press, PrincetonGoogle Scholar
  70. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: IEEE Proceeding of the CEC, San Diego, pp 325–331Google Scholar
  71. van den Bergh F, Engelbrecht AP (2000) Cooperative learning in neural networks using particle swarm optimizers. S Afr Comput J 26:84–90Google Scholar
  72. Vesterstrøm JS, Riget J, Krink T (2002) Division of labor in particle swarm optimisation. In: Proceedings of the CEC 2002, Honolulu, pp 1570–1575Google Scholar
  73. Xie X-F, Zhang W-J, Yang Z-L (2002) A dissipative particle swarm optimization. In: Proceedings of the CEC 2002, HonoluluGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of South DenmarkOdenseDenmark
  2. 2.Department of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations