Advertisement

Ureteroscopy for Renal Stones with Case Discussion of Lower Pole Stones

  • Sri Sivalingam
  • Stephen Y. Nakada
Chapter

Abstract

Ureteroscopy has evolved considerably over the past decade, and the currently available scopes and instruments permit the ureteroscopic treatment of calculi within any location in the urinary collecting system. Earlier ureteroscopes had limitations in visibility and flexion, which was further exacerbated when combined with adjuncts such as baskets or the laser fiber itself. Such limitations were most apparent in treatment of lower pole renal calculi. Additionally, patient factors (e.g. morbid obesity) or stone factors (e.g. increased Hounsfield density or radiolucency) plays little role, if any, in the ureteroscopic management of stones. Excessive stone burden continues to be the main limiting factor for retrograde stone management, but in cases where other options are contraindicated, e.g. in the anticoagulated patient, URS still prevails as a preferred option.

Lower pole renal calculi are some of the most challenging of ureteroscopic cases. This is largely due to the greater instrument manipulation that is necessary to target and treat the stone; second, stone clearance is impacted by this undesirable stone location. We discuss the treatment of lower pole stones by one of two techniques: in situ versus stone distraction/displacement. Both techniques are acceptable methods of lower pole stone management and are largely based upon the expertise and comfort level of the treating surgeon.

Lastly, we discuss the necessary instruments and tools required to perform successful ureteroscopy for stone disease. Further, we provide a detailed description of our technique. The aim of this chapter is to provide the reader an in-depth understanding of contemporary URS for the management of renal calculi, with specific focus on lower pole calculi.

Keywords

Laser Fiber Shock Wave Lithotripsy Renal Calculus Holmium Laser Stone Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Argyropoulos AN, Tolley DA. Optimizing shock wave lithotripsy in the 21st century. Eur Urol. 2007;52(2):344–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Pareek G, Hedican SP, Lee FT, Nakada SY. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology. 2005;66(5):941–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int. 2009;103(4):524–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Grasso M, Loisides P, Beaghler M, Bagley D. The case for primary endoscopic management of upper urinary tract calculi: I. A critical review of 121 extracorporeal shock-wave lithotripsy failures. Urology. 1995;45(3):363–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Albala DM, Assimos DG, Clayman RV, Denstedt JD, Grasso M, Gutierrez-Aceves J, et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol. 2001;166(6):2072–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Patel T, Kozakowski K, Hruby G, Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol. 2009;23(9):1383–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakada SY, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniak M. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000;55(6):816–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Breda A, Ogunyemi O, Leppert JT, Schulam PG. Flexible ureteroscopy and laser lithotripsy for multiple unilateral intrarenal stones. Eur Urol. 2009;55(5):1190–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Atis G, Gurbuz C, Arikan O, Canat L, Kilic M, Caskurlu T. Ureteroscopic management with laser lithotripsy of renal pelvic stones. J Endourol. 2012;26(8):983–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Wignall GR, Canales BK, Denstedt JD, Monga M. Minimally invasive approaches to upper urinary tract urolithiasis. Urol Clin North Am. 2008;35(3):441–54. viii.PubMedCrossRefGoogle Scholar
  11. 11.
    Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Calvert RC, Burgess NA. Urolithiasis and obesity: metabolic and technical considerations. Curr Opin Urol. 2005;15(2):113–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Wiesenthal JD, Ghiculete D, D’A Honey RJ, Pace KT. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res. 2010;38(4):307–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Pearle MS, Nakada SY, Womack JS, Kryger JV. Outcomes of contemporary percutaneous nephrostolithotomy in morbidly obese patients. J Urol. 1998;160(3 Pt 1):669–73.PubMedGoogle Scholar
  15. 15.
    Best SL, Nakada SY. Flexible ureteroscopy is effective for proximal ureteral stones in both obese and nonobese patients: a two-year, single-surgeon experience. Urology. 2011;77(1):36–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Aboumarzouk OM, Somani B, Monga M. Safety and efficacy of ureteroscopic lithotripsy for stone disease in obese patients: a systematic review of the literature. BJU Int. 2012;110(8 Pt B):E374–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Dash A, Schuster TG, Hollenbeck BK, Faerber GJ, Wolf Jr JS. Ureteroscopic treatment of renal calculi in morbidly obese patients: a stone-matched comparison. Urology. 2002;60(3):393–7. discussion 397.PubMedCrossRefGoogle Scholar
  18. 18.
    Delorme G, Huu YN, Lillaz J, Bernardini S, Chabannes E, Guichard G, et al. Ureterorenoscopy with holmium-yttrium-aluminum-garnet fragmentation is a safe and efficient technique for stone treatment in patients with a body mass index superior to 30 kg/m2. J Endourol. 2012;26(3):239–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Wheat JC, Roberts WW, Wolf Jr JS. Multi-session retrograde endoscopic lithotripsy of large renal calculi in obese patients. Can J Urol. 2009;16(6):4915–20.PubMedGoogle Scholar
  20. 20.
    Riley JM, Stearman L, Troxel S. Retrograde ureteroscopy for renal stones larger than 2.5 cm. J Endourol. 2009;23(9):1395–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Eisner BH, Kurtz MP, Dretler SP. Ureteroscopy for the management of stone disease. Nat Rev Urol. 2010;7(1):40–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Preminger GM. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res. 2006;34(2):108–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Weizer AZ, Springhart WP, Ekeruo WO, Matlaga BR, Tan YH, Assimos DG, et al. Ureteroscopic management of renal calculi in anomalous kidneys. Urology. 2005;65(2):265–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Bagley D, Erhard M. Use of the holmium laser in the upper urinary tract. Tech Urol. 1995;1(1):25–30.PubMedGoogle Scholar
  25. 25.
    Vassar GJ, Chan KF, Teichman JM, Glickman RD, Weintraub ST, Pfefer TJ, et al. Holmium:YAG lithotripsy: photothermal mechanism. J Endourol. 1999;13(3):181–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Sea J, Jonat LM, Chew BH, Qiu J, Wang B, Hoopman J, et al. Optimal power settings for holmium:YAG lithotripsy. J Urol. 2012;187(3):914–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Knudsen BE, Pedro R, Hinck B, Monga M. Durability of reusable holmium:YAG laser fibers: a multicenter study. J Urol. 2011;185(1):160–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Lingeman JE, Siegel YI, Steele B, Nyhuis AW, Woods JR. Management of lower pole nephrolithiasis: a critical analysis. J Urol. 1994;151(3):663–7.PubMedGoogle Scholar
  29. 29.
    Sampaio FJ, Aragao AH. Limitations of extracorporeal shockwave lithotripsy for lower caliceal stones: anatomic insight. J Endourol. 1994;8(4):241–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Sampaio FJ, D’Anunciação AL, Silva EC. Comparative follow-up of patients with acute and obtuse infundibulum-pelvic angle submitted to extracorporeal shockwave lithotripsy for lower caliceal stones: preliminary report and proposed study design. J Endourol. 1997;11(3):157–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Elbahnasy AM, Shalhav AL, Hoenig DM, Elashry OM, Smith DS, McDougall EM, et al. Lower caliceal stone clearance after shock wave lithotripsy or ureteroscopy: the impact of lower pole radiographic anatomy. J Urol. 1998;159(3):676–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Pasqui F, Dubosq F, Tchala K, Tligui M, Gattegno B, Thibault P, et al. Impact on active scope deflection and irrigation flow of all endoscopic working tools during flexible ureteroscopy. Eur Urol. 2004;45(1):58–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Landman J, Monga M, El-Gabry EA, Rehman J, Lee DI, Bhayani S, et al. Bare naked baskets: ureteroscope deflection and flow characteristics with intact and disassembled ureteroscopic nitinol stone baskets. J Urol. 2002;167(6):2377–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kourambas J, Delvecchio FC, Munver R, Preminger GM. Nitinol stone retrieval-assisted ureteroscopic management of lower pole renal calculi. Urology. 2000;56(6):935–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Auge BK, Dahm P, Wu NZ, Preminger GM. Ureteroscopic management of lower-pole renal calculi: technique of calculus displacement. J Endourol. 2001;15(8):835–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Holden T, Pedro RN, Hendlin K, Durfee W, Monga M. Evidence-based instrumentation for flexible ureteroscopy: a review. J Endourol. 2008;22(7):1423–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Knudsen B, Miyaoka R, Shah K, Holden T, Turk TM, Pedro RN, et al. Durability of the next-generation flexible fiberoptic ureteroscopes: a randomized prospective multi-institutional clinical trial. Urology. 2010;75(3):534–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Patel SR, McLaren I, Nakada SY. The ureteroscope as a safety wire for ureteronephroscopy. J Endourol. 2012;26(4):351–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson GB, Portela D, Grasso M. Advanced ureteroscopy: wireless and sheathless. J Endourol. 2006;20(8):552–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Desai MR, Ganpule A. Flexible ureterorenoscopy. BJU Int. 2011;108(3):462–74.PubMedCrossRefGoogle Scholar
  41. 41.
    Erhard MJ, Bagley DH. Urologic applications of the holmium laser: preliminary experience. J Endourol. 1995;9(5):383–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Schatloff O, Lindner U, Ramon J, Winkler HZ. Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. J Urol. 2010;183(3):1031–5.PubMedCrossRefGoogle Scholar
  43. 43.
    de la Rosette JJ, Skrekas T, Segura JW. Handling and prevention of complications in stone basketing. Eur Urol. 2006;50(5):991–8. discussion 998–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M, et al. 2007 guideline for the management of ureteral calculi. J Urol. 2007;178(6):2418–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith RD, Patel A. Impact of flexible ureterorenoscopy in current management of nephrolithiasis. Curr Opin Urol. 2007;17(2):114–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Breda A, Ogunyemi O, Leppert JT, Lam JS, Schulam PG. Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2 cm or greater—is this the new frontier? J Urol. 2008;179(3):981–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Tiselius HG, Ackermann D, Alken P, Buck C, Conort P, Gallucci M, et al. Guidelines on urolithiasis. Eur Urol. 2001;40(4):362–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Krambeck AE, Murat FJ, Gettman MT, Chow GK, Patterson DE, Segura JW. The evolution of ureteroscopy: a modern single-institution series. Mayo Clin Proc. 2006;81(4):468–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Jung H, Nørby B, Osther PJ. Retrograde intrarenal stone surgery for extracorporeal shock-wave lithotripsy-resistant kidney stones. Scand J Urol Nephrol. 2006;40(5):380–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Holland R, Margel D, Livne PM, Lask DM, Lifshitz DA. Retrograde intrarenal surgery as second-line therapy yields a lower success rate. J Endourol. 2006;20(8):556–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Pearle MS, Lingeman JE, Leveillee R, Kuo R, Preminger GM, Nadler RB, et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol. 2005;173(6):2005–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Perlmutter AE, Talug C, Tarry WF, Zaslau S, Mohseni H, Kandzari SJ. Impact of stone location on success rates of endoscopic lithotripsy for nephrolithiasis. Urology. 2008;71(2):214–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Wendt-Nordahl G, Trojan L, Alken P, Michel MS, Knoll T. Ureteroscopy for stone treatment using new 270 degrees semiflexible endoscope: in vitro, ex vivo, and clinical application. J Endourol. 2007;21(12):1439–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Cocuzza M, Colombo JR, Cocuzza AL, Mascarenhas F, Vicentini F, Mazzucchi E, et al. Outcomes of flexible ureteroscopic lithotripsy with holmium laser for upper urinary tract calculi. Int Braz J Urol. 2008;34(2):143–9. discussion 149–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Mariani AJ. Combined electrohydraulic and holmium:YAG laser ureteroscopic nephrolithotripsy for 20 to 40 mm renal calculi. J Urol. 2004;172(1):170–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Bilgasem S, Pace KT, Dyer S, Honey RJ. Removal of asymptomatic ipsilateral renal stones following rigid ureteroscopy for ureteral stones. J Endourol. 2003;17(6):397–400.PubMedCrossRefGoogle Scholar
  57. 57.
    Bozkurt OF, Resorlu B, Yildiz Y, Can CE, Unsal A. Retrograde intrarenal surgery versus percutaneous nephrolithotomy in the management of lower-pole renal stones with a diameter of 15 to 20 mm. J Endourol. 2011;25(7):1131–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Koo V, Young M, Thompson T, Duggan B. Cost-effectiveness and efficiency of shockwave lithotripsy vs. flexible ureteroscopic holmium:yttrium-aluminium-garnet laser lithotripsy in the treatment of lower pole renal calculi. BJU Int. 2011;108(11):1913–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of UrologyUniversity of Wisconsin Hospitals & ClinicsMadisonUSA
  2. 2.Department of UrologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations