Advertisement

Percutaneous Stone Removal: Case Discussion on Stones in a Horseshoe Kidney

  • Muhammad Waqas IqbalEmail author
  • Michael E. Lipkin
  • Glenn M. Preminger
Chapter

Abstract

Percutaneous nephrolithotomy (PNL) occupies a central place in the management of kidney as well as large proximal ureteral stones. Advances in equipment and technology with utilization of balloon dilatation, newer digital rigid and flexible nephroscopes, intracorporeal lithotripters, and stone retrieval systems have revolutionized patient care. In this chapter we focus on the technique of percutaneous stone removal and the equipment required to perform PNL successfully including different devices for intracorporeal lithotripsy.

Keywords

Outer Probe Holmium Laser Ultrasonic Probe Horseshoe Kidney Laser Lithotripsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mulvaney WP. Attempted disintegration of calculi by ultrasonic vibrations. J Urol. 1953;70(5):704–7.PubMedGoogle Scholar
  2. 2.
    Grocela JA, Dretler SP. Intracorporeal lithotripsy. Instrumentation and development. Urol Clin North Am. 1997;24(1):13–23.PubMedCrossRefGoogle Scholar
  3. 3.
    LeRoy AJ, Segura JW. Percutaneous ultrasonic lithotripsy. AJR Am J Roentgenol. 1984;143(4):785–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Pietrow PK, Auge BK, Zhong P, Preminger GM. Clinical efficacy of a combination pneumatic and ultrasonic lithotrite. J Urol. 2003;169:1247–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Marberger M, Stackl W, Hruby W, Kroiss A. Late sequelae of ultrasonic lithotripsy of renal calculi. J Urol. 1985;133(2):170–3.PubMedGoogle Scholar
  6. 6.
    Terhorst B. The effect of electrohydaulic waves and ultrasound on the urothelium. Urologe A. 1975;14:41–5.PubMedGoogle Scholar
  7. 7.
    Diri A, Resorlu B, Astarci M, Unsal A, Germiyonoglu C. Tissue effects of intracorporeal tissue techniques during percutaneous nephrolithotomy: comparison of pneumatic and ultrasonic lithotripters on rat bladder. Urol Res. 2012;40(4):409–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Hofbauer J, Hobarth K, Marberger M. Electrohydraulic versus pneumatic disintegration in the treatment of ureteral stones: A randomized, prospective trial. J Urol. 1995;153(3 Pt 1):623–5.PubMedGoogle Scholar
  9. 9.
    Piergiovanni M, Desgrandchamps F, Cochand-Priollet B, Janssen T, Colomer S, Teillac P, Le Duc A. Ureteral and bladder lesions after ballistic, ultrasonic, electrohydraulic, or laser lithotripsy. J Endourol. 1994;8(4):293–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhu S, Kourambas J, Munver R, Preminger GM, Zhong P. Quantification of the tip movement of lithotripsy flexible pneumatic probes. J Urol. 2000;164(5):1735–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Denstedt JD, Eberwein PM, Singh RR. The Swiss lithoclast: A new device for intracorporeal lithotripsy. J Urol. 1992;148(3 Pt 2):1088–90.PubMedGoogle Scholar
  12. 12.
    Haupt G, Pannek J, Herde T, Schulze H, Senge T. The lithovac: A new suction device for the Swiss lithoclast. J Endourol. 1995;9(5):375–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhong P, Preminger GM. In vitro comparison of different modes of intracorporeal shock wave lithotripsy. J Urol. 1995;153:285A.Google Scholar
  14. 14.
    Haupt G, Olschewski R, Hartung S, Senge T. Comparison of laser and ballistic systems by in vitro lithotripsy with a standardized stone model. J Endourol. 1993;7:S62.Google Scholar
  15. 15.
    Murthy PV, Rao HS, Meherwade S, Rao PV, Srivastava A, Sasidharan K. Ureteroscopic lithotripsy using miniendoscope and Swiss lithoclast: experience in 147 cases. J Endourol. 1997;11(5):327–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Teh CE, Zhong P, Preminger GM. Laboratory and clinical assessment of pneumatically driven intracorporeal lithotripsy. J Endourol. 1998;12(2):162–9.Google Scholar
  17. 17.
    Denstedt JD. Use of Swiss lithoclast for percutaneous nephrolithotripsy. J Endourol. 1993;7(6):477–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Chew BH, Arsovska O, Lange D, Wright JE, Beiko DT, Ghiculete D, et al. The Canadian StoneBreaker trial: a randomized, multicenter trial comparing the LMA StoneBreaker™ and the Swiss LithoClast® during percutaneous nephrolithotripsy. J Endourol. 2011;25(9):1415–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Denstedt JD, Razvi HA, Rowe E, Grignon DJ, Eberwein PM. Investigation of the tissue effects of a new device for intracorporeal lithotripsy—the Swiss Lithoclast. J Urol. 1995;153(2):535–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Vorreuther R, Klotz T, Heidenreich A, Nayal W, Engelmann U. Pneumatic v electrokinetic lithotripsy in treatment of ureteral stones. J Endourol. 1998;12(3):233–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang AJ, Baldwin GT, Gabriel JC, Cocks FH, Goldsmith ZG, Iqbal MW, et al. In-vitro assessment of a new portable ballistic lithotripter with percutaneous and ureteroscopic models. J Endourol. 2012;26(11):1500–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Watson GM, Wickham JE. Initial experience with a pulsed dye laser for ureteric calculi. Lancet. 1986;1(8494):1357–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Dushinski JW, Lingeman JE. High-speed photographic evaluation of holmium laser. J Endourol. 1998;12(2):177–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Wollin TA, Denstedt JD. The holmium laser in urology. J Clin Laser Med Surg. 1998;16(1):13–20.PubMedGoogle Scholar
  25. 25.
    Sun Y, Gao X, Zhou T, Chen S, Wang L, Xu C, et al. 70 W holmium: yttrium-aluminum-garnet laser in percutaneous nephrolithotomy for staghorn calculi. J Endourol. 2009;23(10):1687–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Teichman JM, Vassar GJ, Bishoff JT, Bellman GC. Holmium:YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol. 1998;159(1):17–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Vassar GJ, Teichman JM, Glickman RD. Holmium:YAG lithotripsy efficiency varies with energy density. J Urol. 1998;160(2):471–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Jou YC, Shen JH, Cheng MC, Lin CT, Chen PC. Percutaneous nephrolithotomy with holmium: yttrium-aluminum-garnet laser and fiber guider—report of 349 cases. Urology. 2005;65(3):454–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Michel MS, Honeck P, Alken P. New endourologic technology for simultaneous holmium:YAG laser lithotripsy and fragment evacuation for PCNL: ex-vivo comparison to standard ultrasonic lithotripsy. J Endourol. 2008;22(7):1537–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhong P, Tong HL, Cocks FH, Preminger GM. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy. J Endourol. 1997;11(1):55–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim SC, Matlaga BR, Tinmouth WW, Kuo RL, Evan AP, McAteer JA, et al. In vitro assessment of a novel dual probe ultrasonic intracorporeal lithotriptor. J Urol. 2007;177(4):1363–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Pugh JW, Canales BK. New instrumentation in percutaneous nephrolithotomy. Indian J Urol. 2010;26(3):389–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Krambeck AE, Miller NL, Humphreys MR, Nakada SY, Denstedt JD, Razvi H, et al. Randomized ­controlled, multicentre clinical trial comparing a dual-probe ultrasonic lithotrite with a single-probe lithotrite for percutaneous ephrolithotomy. BJU Int. 2011;107(5):824–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Soucy F, Ko R, Denstedt JD, Razvi H. Occupational noise exposure during endourologic procedures. J Endourol. 2008;22(8):1609–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Auge BK, Lallas CD, Pietrow PK, Zhong P, Preminger GM. In vitro comparison of standard ultrasound and pneumatic lithotrites with a new combination intracorporeal lithotripsy device. Urology. 2002;60(1):28–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Hofmann R, Weber J, Heidenreich A, Varga Z, Olbert P. Experimental studies and first clinical experience with a new Lithoclast and ultrasound combination for lithotripsy. Eur Urol. 2002;42(4):376–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Lehman DS, Hruby GW, Phillips C, Venkatesh R, Best S, Monga M, et al. Prospective randomized comparison of a combined ultrasonic and pneumatic lithotrite with a standard ultrasonic lithotrite for percutaneous nephrolithotomy. J Endourol. 2008;22(2):285–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu Z, Xi Q, Wang S, Liu J, Ye Z, Yu X, et al. Percutaneous nephrolithotomy for proximal ureteral calculi with severe hydronephrosis: assessment of different lithotriptors. J Endourol. 2010;24(2):201–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Louie M, Lowe G, Knudsen BE. Comparison of the lithoclast ultra and cyberwand in a cystolitholapaxy model. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers, 27–31 Jan 2008, San Jose, CA. 6842:684215-1–684214-6.Google Scholar
  40. 40.
    Rané A, Kommu SS, Kandaswamy SV, Rao P, Aron M, Kumar R, et al. Initial clinical evaluation of a new pneumatic intracorporeal lithotripter. BJU Int. 2007;100(3):629–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Andonian S, Okeke Z, Anidjar M, Smith AD. Digital nephroscopy: the next step. J Endourol. 2008;22(4):601–2.PubMedCrossRefGoogle Scholar
  42. 42.
    Hoffman N, Lukasewycz SJ, Canales B, Botnaru A, Slaton JW, Monga M. Percutaneous renal stone extraction: in vitro study of retrieval devices. J Urol. 2004;172(2):559–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Khanna R, Sarkissian C, Monga M. The roth-net device for percutaneous stone retrieval. J Endourol Part B, Videourology. 2011;25.Google Scholar
  44. 44.
    Wosnitzer M, Xavier K, Gupta M. Novel use of a ureteroscopic stone entrapment device to prevent antegrade stone migration during percutaneous nephrolithotomy. J Endourol. 2009;23:203–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Decter RM. Renal duplication and fusion anomalies. Pediatr Clin North Am. 1997;44(5):1323–41.PubMedCrossRefGoogle Scholar
  46. 46.
    Weizer AZ, Silverstein AD, Auge BK, Delvecchio FC, Raj G, Albala DM, et al. Determining the incidence of horseshoe kidney from radiographic data at a single institution. J Urol. 2003;170(5):1722.PubMedCrossRefGoogle Scholar
  47. 47.
    Raj GV, Auge BK, Assimos D, Preminger GM. Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys. J Endourol. 2004;18(2):157–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Stein RJ, Desai MM. Management of urolithiasis in the congenitally abnormal kidney (horseshoe and ectopic). Curr Opin Urol. 2007;17(2):125–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Molimard B, Al-Qahtani S, Lakmichi A, Sejiny M, Gil-Diez de Medina S, Carpentier X, et al. Flexible ureterorenoscopy with holmium laser in horseshoe kidneys. Urology. 2010;76(6):1334–7.CrossRefGoogle Scholar
  50. 50.
    Raj GV, Auge BK, Weizer AZ, Denstedt JD, Watterson JD, Beiko DT, et al. Percutaneous management of calculi within horseshoe kidneys. J Urol. 2003;170(1):48–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Shokeir AA, El-Nahas AR, Shoma AM, Eraky I, El-Kenawy M, Mokhtar A, et al. Percutaneous nephrolitholomy in treatment of large stones in horseshoe kidneys. Urology. 2004;64(3):426–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Al-Otaibi K, Hosking DH. Percutaneous stone removal in horseshoe kidneys. J Urol. 1999;162(3 Pt 1):674–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Lingeman JE, Saw KC. Percutaneous operative procedures in horseshoe kidneys. J Urol. 1999;161:371.CrossRefGoogle Scholar
  54. 54.
    Liatsikos EN, Kallidonis P, Stolzenburg JU, Ost M, Keeley F, Traxer O, et al. Percutaneous management of staghorn calculi in horseshoe kidneys: a multi-institutional experience. J Endourol. 2010;24(4):531–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Miller NL, Matlaga BR, Handa SE, Munch LC, Lingeman JE. The presence of horseshoe kidney does not affect the outcome of percutaneous nephrolithotomy. J Endourol. 2008;22(6):1219–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Rana AM, Bhojwani JP. Percutaneous nephrolithotomy in renal anomalies of fusion, ectopia, rotation, hypoplasia, and pelvicalyceal aberration: uniformity in heterogeneity. J Endourol. 2009;23(4):609–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Razvi S, Zaidi Z. Percutaneous nephrolithotomy (PCNL) in horse shoe kidneys. J Pak Med Assoc. 2007;57(5):222–5.PubMedGoogle Scholar
  58. 58.
    Ozden E, Bilen CY, Mercimek MN, Tan B, Sarıkaya S, Sahin A. Horseshoe kidney: does it really have any negative impact on surgical outcomes of percutaneous nephrolithotomy? Urology. 2010;75(5):1049–52.PubMedCrossRefGoogle Scholar
  59. 59.
    Skolarikos A, Binbay M, Bisas A, Sari E, Bourdoumis A, Tefekli A, et al. Percutaneous nephrolithotomy in horseshoe kidneys: factors affecting stone-free rate. J Urol. 2011;186(5):1894–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Muhammad Waqas Iqbal
    • 1
    Email author
  • Michael E. Lipkin
    • 1
  • Glenn M. Preminger
    • 1
  1. 1.Division of Urology, Department of SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations