Advertisement

Complications of Shock Wave Lithotripsy

  • Mitra R. de CógáinEmail author
  • Amy E. Krambeck
Chapter

Abstract

Shockwave lithotripsy (SWL) was introduced to clinical urologic practice in the 1980s with Dornier’s HM3 lithotripter and has become a common first-line treatment modality for urolithiasis (Chaussy et al., J Urol 127:417–20, 1982). Initial SWL results were promising, and since that time, SWL has become the most commonly performed treatment for renal and ureteral stones (Chaussy and Fuchs, J Urol 92:339–43, 1986; Pearle, J Urol 173:848–57, 2005).

As SWL is a noninvasive therapeutic modality, it initially was perceived as harmless to the kidney and surrounding organs (Chaussy and Fuchs, J Urol 92:339–43, 1986). However, multiple studies since that early experience have suggested or demonstrated deleterious effects of the repetitive shock waves required for successful stone fragmentation. These include acute injury to the kidney and other adjacent structures including the pancreas, colon, liver, spleen, pleura, and large blood vessels (McAteer and Evan, Semin Nephrol 28:200–13, 2008). Although SWL is generally well tolerated, it is imperative for practicing clinicians to be aware of the potential complications of this procedure.

Current SWL requires the appropriate selection of a limited number of parameters for each patient, including number of shocks delivered, shock rate, and power. However, safe application of SWL therapy must include appropriate patient selection with attention to comorbid medical conditions, stone location, size, and composition. Some complications may arise only in patients or stones that are inappropriately selected for SWL therapy. This chapter focuses on the possible complications of SWL, as well as techniques to optimize patient outcomes, while decreasing the risk for complications.

Keywords

Shock Wave Abdominal Aortic Aneurysm Ureteral Stone Ureteral Calculus Distal Ureteral Stone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chaussy C, Schniedt E, Jocham D, Brendel W, Forssmann B, Walther V. First clinical experience with extracorporeally induced destruction of kidney stones by shockwaves. J Urol. 1982;127(3):417–20.PubMedGoogle Scholar
  2. 2.
    Chaussy C, Fuchs G. Extracorporeal lithotripsy in the treatment of renal lithiasis. 5 years’ experience. J Urol. 1986;92(6):339–43.Google Scholar
  3. 3.
    Pearle MS, Calhoun EA, Curhan GC, Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis. J Urol. 2005;173(3):848–57.PubMedCrossRefGoogle Scholar
  4. 4.
    McAteer JA, Evan AP. The acute and long-term adverse effects of shockwave lithotripsy. Semin Nephrol. 2008;28(2):200–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Chaussy C, Schüller J, Schmiedt E, Brandl H, Jocham D, Liedl B. Extracorporeal shock-wave lithotripsy (ESWL) for treatment of urolithiasis. Urology. 1984;23:59–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Kaude JV, Williams CM, Millner MR, Scott KN, Finlayson B. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy. AJR Am J Roentgenol. 1985;145:305–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Lingeman JE, Matlaga BR, Evan AP. Surgical management of upper urinary tract calculi. In: Kavoussi LR, Novick AC, Partin AW, et al., editors. Campbell-Walsh urology. 9th ed. Philadelphia, PA: Saunders-Elsevier; 2007. p. 1431–507.Google Scholar
  8. 8.
    Connors BA, Evan AP, Blomgren PM, Willis LR, Handa RK, Lifshitz DA, et al. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J Endourol. 2006;20(9):607–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Willis LR, Evan AP, Connors BA, Blomgren P, Fineberg NS, Lingeman JE. Relationship between kidney size, renal injury, and renal impairment induced by shock wave lithotripsy. J Am Soc Nephrol. 1999;10(8):1753–62.PubMedGoogle Scholar
  10. 10.
    Knapp PM, Kulb TB, Lingeman JE, Newman DM, Mertz JH, Mosbaugh PG, et al. Extracorporeal shock wave lithotripsy-induced perirenal hematomas. J Urol. 1988;139(4):700–3.PubMedGoogle Scholar
  11. 11.
    Newman LH, Saltzman B. Identifying risk factors in development of clinically significant post-shock-wave lithotripsy subcapsular hematomas. Urology. 1991;38(1):35–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Krambeck A, Lingeman JE. Clinical implications and bioeffects of shock wave lithotripsy. AUA Update Series. 2009;28(25):230–2.Google Scholar
  13. 13.
    Baumgartner BR, Dickey KW, Ambrose SS, Walton KN, Nelson RC, Bernardino ME. Kidney changes after extracorporeal shock wave lithotripsy: appearance on MR imaging. Radiology. 1987;163(2):531–4.PubMedGoogle Scholar
  14. 14.
    Uemura K, Takahashi S, Shintani-Ishida K, Nakajima M, Saka K, Yoshida K. A death due to perirenal hematoma complicating extracorporeal shockwave lithotripsy. J Forensic Sci. 2008;53(2):469–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Coptcoat MJ, Webb DR, Kellett MJ, Fletcher MS, McNicholas TA, Dickinson IK, et al. The complications of extracorporeal shockwave lithotripsy: management and prevention. Br J Urol. 1986;58(6):578–80.CrossRefGoogle Scholar
  16. 16.
    Dhar NB, Thornton J, Karafa MT, Streem SB. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J Urol. 2004;172(6 Pt 1):2271–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Streem SB, Yost A. Extracorporeal shock wave lithotripsy in patients with bleeding diatheses. J Urol. 1991;144(6):1347–8.Google Scholar
  18. 18.
    Watterson JD, Girvan AR, Cook AJ, Beiko DT, Nott L, Auge BK, et al. Safety and efficacy of holmium:YAG laser lithotripsy in patients with bleeding diatheses. J Urol. 2002;168(2):442–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Lingeman J, Delius M, Evan A, Gupta M, Sarica K, Strohmaier W. Bioeffects and physical mechanisms of SW effects in SWL. In: Segura J, Conort P, Khoury S, et al., eds. Stone disease: first international consultation on stone disease. Paris: Heath Publications; 2003, p. 251-86.Google Scholar
  20. 20.
    Dalecki D, Raeman CH, Child SZ, Penney DP, Mayer R, Carstensen EL. The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound Med Biol. 1997;23(9):1435–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Evan AP, Willis LR, McAteer JA, Bailey MR, Connors BA, Shao Y, et al. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in SWL. J Urol. 2002;168(4 Pt 1):1556–62.PubMedGoogle Scholar
  22. 22.
    Rigatti P, Colombo R, Centemero A, Francesca F, Di Girolamo V, Montorsi F, et al. Histological and ultrastructural evaluation of extracorporeal shock wave lithotripsy-induced acute renal lesions: preliminary report. Eur Urol. 1989;16(3):207–11.PubMedGoogle Scholar
  23. 23.
    Seitz G, Pletzer K, Neisius D, Dippel W, Gebhardt T. Pathologic-anatomic alterations in human kidneys after extracorporeal piezoelectric shock wave lithotripsy. J Endourol. 1991;5(1):17–20.CrossRefGoogle Scholar
  24. 24.
    Brewer SL, Atala AA, Ackerman DM, Steinbock GS. Shock wave lithotripsy damage in human cadaver kidneys. J Endourol. 1988;4:333–9.CrossRefGoogle Scholar
  25. 25.
    Grantham JR, Millner MR, Kaude JV, Finlayson B, Hunter 2nd PT, Newman RC. Renal stone disease treated with extracorporeal shock wave lithotripsy: short-term observations in 100 patients. Radiology. 1986;158(1):203–6.PubMedGoogle Scholar
  26. 26.
    Newman R, Hackett R, Senior D, Brock K, Feldman J, Sosnowski J, et al. Pathological effects of ESWL on canine renal tissue. Urology. 1987;29(2):194–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Morris JS, Husmann DA, Wilson WT, Preminger GM. Temporal effects of shock wave lithotripsy. J Urol. 1991;145(4):881–3.PubMedGoogle Scholar
  28. 28.
    Lechevallier E, Siles S, Ortega JC, Coulange C. Comparison by SPECT of renal scars after extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. J Endourol. 1993;7(6):465–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Karlsen SJ, Berg KJ. Acute changes in renal function following extracorporeal shock wave lithotripsy in patients with a solitary functioning kidney. J Urol. 1991;145(2):253–6.PubMedGoogle Scholar
  30. 30.
    Brito CG, Lingeman JE, Newman DM, Newman DE, Kight JL, Heck LL. Long-term follow-up of renal function in ESWL treated patients with a solitary kidney. J Urol. 1990;143(Suppl):299.Google Scholar
  31. 31.
    Williams CM, Kaude JV, Newman RC, Peterson JC, Thomas WC. Extracorporeal shock-wave lithotripsy: long-term complications. AJR Am J Roentgenol. 1988;150(2):311–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Orestano F, Caronia N, Gallo G. Functional aspects of the kidney after shock wave lithotripsy. In: Lingeman JE, Newman DM, editors. Shock Wave Lithotripsy. New York: Plenum Press; 1989. p. 15–7.CrossRefGoogle Scholar
  33. 33.
    Peterson JC, Finlayson B. Effects of ESWL on blood pressure. In: Gravenstein JS, Peter K, editors. Extracorporeal shock wave lithotripsy for renal stone disease: technical and clinical aspects. Boston, MA: Butterworths; 1986. p. 145–50.Google Scholar
  34. 34.
    Janetschek G, Frauscher F, Knapp R, Höfle G, Peschel R, Bartsch G. New onset hypertension after extracorporeal shock wave lithotripsy: age related incidence and prediction by intrarenal resistive index. J Urol. 1997;158:346–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Lingeman JE, Newman D, Mertz JH, Mosbaugh PG, Steele RE, Kahnoski RJ, et al. Extracorporeal shock wave lithotripsy: the Methodist Hospital of Indiana experience. J Urol. 1986;135(6):1134–7.PubMedGoogle Scholar
  36. 36.
    Krambeck AE, Gettman MT, Rohlinger AL, Lohse CM, Patterson DE, Segura JW. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of follow-up. J Urol. 2006;175:1742–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Montgomery BS, Cole RS, Plafrey EL, Shuttleworth KE. Does extracorporeal shockwave lithotripsy cause hypertension? Br J Urol. 1989;64(6):567–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Strohmaier WL, Schmidt J, Lahme S, Bichler KH. Arterial blood pressure following different types of urinary stone therapy Presented at the 8th European Symposium on Urolithiasis, Parma, Italy, 1999. Eur Urol. 2000;38:753–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Sato Y, Tanda H, Kato S, Ohnishi S, Nakajima H, Nanbu A, et al. Shock wave lithotripsy for renal stones is not associated with hypertension and diabetes mellitus. J Urol. 2008;71(4):586–91.CrossRefGoogle Scholar
  40. 40.
    Liedl B, Jocham D, Lunz C, Schuster C, Schmiedt E. Five year follow-up of urinary stone treatment with extracorporeal shock wave lithotripsy. J Endourol. 1988;2:157–62.CrossRefGoogle Scholar
  41. 41.
    Lingeman JE, Woods JR, Toth PD. Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA. 1990;263(13):1789–94.PubMedCrossRefGoogle Scholar
  42. 42.
    Puppo P, Germinale F, Ricciotti G, Caviglia C, Saffoti S, Pontremoli P. Hypertension after extracorporeal shock wave lithotripsy: a false alarm. J Endourol. 1988;3:401–4.CrossRefGoogle Scholar
  43. 43.
    Elves AW, Tilling K, Menezes P, Wills M, Rao PN, Feneley RC. Early observations of the effect of extracorporeal shockwave lithotripsy on blood pressure: a prospective randomized control clinical trial. BJU Int. 2000;85(6):611–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Jewett MA, Bombardier C, Logan AG, Psihramis KE, Wesley-James T, Mahoney JE, et al. A randomized controlled trial to assess the incidence of new onset hypertension in patients after shock wave lithotripsy for asymptomatic renal calculi. J Urol. 1998;160(4):1241–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Krambeck AE, Rule AD, Li X, Bergstralh EJ, Gettman MT, Lieske JC. Shock wave lithotripsy is not predictive of hypertension among community stone formers at long-term followup. J Urol. 2011;185:164–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Yokoyama M, Shoji F, Yanagizawa R, Kanemura M, Kitahara K, Takahasi S, et al. Blood pressure changes following extracorporeal shock wave lithotripsy for urolithiasis. J Urol. 1992;147(3):553–7.CrossRefGoogle Scholar
  47. 47.
    Puppo P, Germinale F, Ricciotti G, Caviglia C, Saffioti S, Pontremoli P, et al. Hypertension after Extracorporeal Shock Wave Lithotripsy: A False Alarm. J. Endourol. 1989;3(4):401–404.CrossRefGoogle Scholar
  48. 48.
    Hassana I, Zietlow SP. Acute pancreatitis after extracorporeal shock wave lithotripsy for a renal calculus. Urology. 2002;60(6):1111.CrossRefGoogle Scholar
  49. 49.
    Abe H, Nisimura T, Osawa S, Miura T, Oka F. Acute pancreatitis caused by extracorporeal shock wave lithotripsy for bilateral renal pelvic calculi. Int J Urol. 2000;7(2):65–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Karakayali F, Sevmis S, Ayvaz I, Tekin I, Boyvat F, Moray G. Acute necrotizing pancreatitis as a rare complication of extracorporeal shock wave lithotripsy. Int J Urol. 2006;13:613–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Kirkali Z, Kirkali G, Tanci S, Tahiri Y. The effect of extracorporeal shock wave lithotripsy on pancreatic enzymes. Int Urol Nephrol. 1994;26:405–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Hung SY, Chen HM, Jan YY. Common bile duct and pancreatic injury after extracorporeal shock wave lithotripsy for renal stone. Hepatogastroenterology. 2000;47(34):1162–3.PubMedGoogle Scholar
  53. 53.
    de Cógáin MR, Krambeck AE, Rule AD, Li X, Bergstralh EJ, Gettman MT, et al. Shock wave lithotripsy and diabetes mellitus: a population-based cohort study. Urology. 2012;79(2):298–302.PubMedCrossRefGoogle Scholar
  54. 54.
    Simunovic D, Sudarevic B, Galic J. Extracorporeal shockwave lithotripsy in elderly: impact of age and comorbidity on stone-free rate and complications. J Endourol. 2010;24(11):1831–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Sighinolfi MC, Micali S, Grande M, Mofferdin A, De Stefani S, Bianchi G. Extracorporeal shock wave lithotripsy in an elderly population: how to prevent complications and make the treatment safe and effective. J Endourol. 2008;22(10):2223–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Lifshitz DA, Lingeman JE, Zafar FS, Hollensbe DW, Nyhuis AW, Evan AP. Alterations in predicted growth rates of pediatric kidneys treated with extracorporeal shockwave lithotripsy. J Endourol. 1998;12(5):469–75.PubMedCrossRefGoogle Scholar
  57. 57.
    Neal DE, Harmon E, Hlavinka T, Morvant A, Richardson E, Thomas R. Effects of multiple sequential extracorporeal shock wave treatments on renal function: a primate model. J Endourol. 1991;5:217–21.CrossRefGoogle Scholar
  58. 58.
    Evan AP, Willis LR, Lingeman JE, McAteer JA. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron. 1998;78(1):1–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Feagins BA, Alexander M, Dollar M, Husmann DA, Preminger GM. Prevention of lithotripsy-induced hypertension in a juvenile animal model. J Urol. 1991;145:258.Google Scholar
  60. 60.
    Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck AC, Gallucci M, et al. 2007 guideline for the management of ureteral calculi. Eur Urol. 2007;52(6):1610–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Madbouly K, Sheir KZ, Elsobky E, Eraky I, Kenawy M. Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol. 2002;167(3):1239–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Weinerth JL, Flatt JA, Carson 3rd CC. Lessons learned in patients with large steinstrasse. J Urol. 1989;142(6):1425–7.PubMedGoogle Scholar
  63. 63.
    Lucio 2nd J, Korkes F, Lopes-Neto AC, Silva EG, Mattos MH, Pompeo AC. Steinstrasse predictive factors and outcomes after extracorporeal shockwave lithotripsy. Int Braz J Urol. 2011;37(4):477–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Al-Awadi K, Abdul Halim H, Kehinde EO, Al-Tawheed A. Steinstrasse: a comparison of incidence with and without J stenting and the effect of J stenting on subsequent management. BJU Int. 1999;84(6):618–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Sulaiman MN, Buchholz NP, Clark PH. The role of ureteral stent placement in the prevention of Steinstrasse. J Endourol. 1999;13(3):151–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Pryor JL, Jenkins AD. Use of double-pigtail stents in extracorporeal shock wave lithotripsy. J Urol. 1990;143(3):475–8.PubMedGoogle Scholar
  67. 67.
    Argyropoulos AN, Tolley DA. Ureteric stents compromise stone clearance after shockwave lithotripsy for ureteric stones: results of a matched-pair analysis. BJU Int. 2009;103(1):76–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Lingeman JE, Coury TA, Newman DM, Kahnoski RJ, Mertz JH, Mosbaugh PG, et al. Comparison of results and morbidity of percutaneous nephrostolithotomy and extracorporeal shock wave lithotripsy. J Urol. 1987;138(3):485–90.PubMedGoogle Scholar
  69. 69.
    Pace KT, Weir MJ, Tariq N, Honey RJ. Low success rate of repeat shock wave lithotripsy for ureteral stones after failed initial treatment. J Urol. 2000;164(6):1905–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Consensus conference. Prevention and treatment of kidney stones. JAMA. 1988;260(7):977–81.Google Scholar
  71. 71.
    Carr LK, D’A Honey J, Jewett MA, Ibanez D, Ryan M, Bombardier C. New stone formation: a comparison of extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. J Urol. 1996;155(5):1565–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Krambeck AE, LeRoy AJ, Patterson DE, Gettman MT. Long-term outcomes of percutaneous nephrolithotomy compared to shock wave lithotripsy and conservative management. J Urol. 2008;179(6):2233–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Buchholz NP, Meier-Padel S, Rutishauser G. Minor residual fragments after extracorporeal shockwave lithotripsy: spontaneous clearance or risk factor for recurrent stone formation? J Endourol. 1997;11(4):227–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Streem SB, Yost A, Mascha E. Clinical implications of clinically insignificant stone fragments after extracorporeal shock wave lithotripsy. J Urol. 1996;155(4):1186–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Krambeck AE, Handa SE, Evan AP, Lingeman JE. Brushite stone disease as a consequence of lithotripsy? Urol Res. 2010;38(4):293–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Klee LW, Brito CG, Lingeman JE. The clinical implications of brushite calculi. J Urol. 1991;145(4):715–8.PubMedGoogle Scholar
  77. 77.
    Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE. Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int. 2004;66:777–85.PubMedCrossRefGoogle Scholar
  78. 78.
    Parr KL, Lingeman JE, Jordan M, Coury TA. Creatinine kinase concentrations and electrocardiographic changes in extracorporeal shock-wave lithotripsy. Urology. 1988;32(1):21–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Duvdevani M, Lorber G, Gofrit ON, Latke A, Katz R, Landau EH, et al. Fever after shockwave lithotripsy–risk factors and indications for prophylactic antimicrobial treatment. J Endourol. 2010;24(2):277–81.PubMedCrossRefGoogle Scholar
  80. 80.
    Bierkens AF, Hendrikx AJ, Ezz el Din KE, de la Rosette JJ, Horrevorts A, Doesburg W, et al. The value of antibiotic prophylaxis during extracorporeal shock wave lithotripsy in the prevention of urinary tract infections in patients with urine proven sterile prior to treatment. Eur Urol. 1997;31(1):30–5.PubMedGoogle Scholar
  81. 81.
    Wendt-Nordahl G, Kramobach P, Hannak D, Häcker A, Michel MS, Alken P, et al. Prospective evaluation of acute endocrine pancreatic injury as collateral damage of shock-wave lithotripsy for upper urinary tract stones. BJU Int. 2008;100(6):1339–43.CrossRefGoogle Scholar
  82. 82.
    Gordetsky J, Hislop S, Orloff M, Butler M, Erturk E. Subcapsular hepatic hematoma with right hepatic vein thrombosis: a complication of shock wave lithotripsy. Can Urol Assoc J. 2008;2(1):61–3.PubMedGoogle Scholar
  83. 83.
    White WM, Morris SA, Klein FA, Waters WB. Splenic rupture following shock wave lithotripsy. Can J Urol. 2008;15:4196–9.PubMedGoogle Scholar
  84. 84.
    Al Karawi MA, Mohamed AR, el-Etaibi KE, Abomelha MS, Seed RF. Extracorporeal shock-wave lithotripsy (ESWL)-induced erosions in upper ­gastrointestinal tract. Prospective study in 40 patients. Urology. 1987;30(3):224–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Cass AS. Colonic injury with ESWL for an upper ureteral calculus. In: Lingeman JE, Newman DM, editors. Proceedings of the 4th symposium on shock wave lithotripsy: state of the art. New York: Plenum Press; 1988.Google Scholar
  86. 86.
    El-Faqih SR. Small bowel perforation after extracorporeal shockwave lithotripsy for ureteric stone: a case report and review of the literature. Saudi J Gastroenterol. 2002;8:59–61.PubMedGoogle Scholar
  87. 87.
    Albers DD, Lybrand 3rd FE, Axton JC, Wendelken JR. Shockwave lithotripsy and pacemakers: experience with 20 cases. J Endourol. 1995;9(4):301–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Lazarides MK, Drista H, Arvanitas DP, Dayantas JN. Aortic aneurysm rupture after extracorporeal shock wave lithotripsy. Surgery. 1996;122(1):112–3.CrossRefGoogle Scholar
  89. 89.
    Vasavada SP, Streem SB, Kottke-Marchant K, Novick AC. Pathological effects of extracorporeally generated shock waves on calcified aortic aneurysm tissue. J Urol. 1994;152(1):45–8.PubMedGoogle Scholar
  90. 90.
    Carey SW, Streem SB. Extracorporeal shock wave lithotripsy for patients with calcified ipsilateral renal arterial or abdominal aortic aneurysms. J Urol. 1992;148(1):18–20.PubMedGoogle Scholar
  91. 91.
    Miller RD, Cucchiara RF, Miller ED, Reves JG, Roizen MF, Savarese JJ. Anesthesia. 5th ed. Philadelphia, PA: Churchill Livingstone; 2000. p. 1950–1.Google Scholar
  92. 92.
    Tiede JM, Lumpkin EN, Wass CT, Long TR. Hemoptysis following extracorporeal shock wave lithotripsy: a case of lithotripsy-induced pulmonary contusion in a pediatric patient. J Clin Anesth. 2003;15:530–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Frankenschmidt A, Sommerkamp H. Shock wave lithotripsy during pregnancy: a successful clinical experiment. J Urol. 1998;159(2):501–2.PubMedCrossRefGoogle Scholar
  94. 94.
    Gulum M, Yeni E, Kocyigit A, Taskin A, Savas M, Ciftci H, et al. Sperm DNA damage and seminal oxidative status after shock-wave lithotripsy for distal ureteral stones. Fertil Steril. 2011;96(5):1087–90.PubMedCrossRefGoogle Scholar
  95. 95.
    Erturk E, Ptak AM, Monaghan J. Fertility measures in women after extracorporeal shockwave lithotripsy of distal ureteral stones. J Endourol. 1997;11(5):315–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Willis LR, Evan AP, Connors BA, Handa RK, Blomgren PM, Lingeman JE. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. J Am Soc Nephrol. 2006;17(3):663–73.PubMedCrossRefGoogle Scholar
  97. 97.
    Evan AP, Connors BA, Pennington DJ, Blomgren PM, Lingeman JE, Fineberg NS, et al. Renal disease potentiates the injury caused by SWL. J Endourol. 1999;13(9):619–28.PubMedCrossRefGoogle Scholar
  98. 98.
    Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S. Effect of initial shock wave voltage on SWL-induced lesion size during step-wise voltage ramping. BJU Int. 2009;103(1):104–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Evan AP, McAteer JA, Connors BA, Pm B, Lingeman JE. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJU Int. 2007;100(3):624–7. discussion 627–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Crow P, Keeley FX. Does the rate of shock wave delivery affect outcomes in patients receiving shock wave lithotripsy for urinary calculi? Nat Clin Pract Urol. 2008;5(9):478–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of UrologyMayo Clinic RochesterRochesterUSA

Personalised recommendations