Advertisement

Improving Shockwave Lithotripsy Outcomes

  • Margaret S. PearleEmail author
  • Jodi Antonelli
  • Paurush Babbar
Chapter

Abstract

Shockwave lithotripsy (SWL) is one of the most consistently utilized procedures for the treatment of upper urinary tract stones. SWL was initially applied widely as a treatment for upper tract stones until the limitations of the technology became apparent. Over the last decade a number of advances have been introduced that have improved SWL outcomes without the use of new or improved lithotripters and these measures have contributed to maintaining the widespread applicability of SWL in the treatment of urinary stones. These advances include refining patient selection, including the use of nomograms, to increase the chance of successful treatment. Medication adjuncts have been used as part of SWL treatment to enhance stone fragmentation and potentially reduce SWL-induced renal injury. Pharmacologic and mechanical measures have been initiated to improve stone clearance and reduce post-SWL recurrences. This chapter will review these nontechnologic advances that have been introduced to enhance SWL outcomes.

Keywords

Shock Wave Lithotripsy Ureteral Stone Stone Size Ureteral Calculus Residual Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pearle MS, Calhoun EA, Curhan GC. Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis. J Urol. 2005;173(3):848–57.PubMedCrossRefGoogle Scholar
  2. 2.
    Lotan Y, Cadeddu JA, Pearle MS. International comparison of cost effectiveness of medical management strategies for nephrolithiasis. Urol Res. 2005;33(3):223–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Matlaga BR. America Board of Urology. Contemporary surgical management of upper urinary tract calculi. J Urol. 2009;181(5):2152–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Ogan K, Pearle MS. Shock wave lithotripsy for urinary stones and non-calculus applications. In: Moore RG, Bischoff JT, Loening S, Docimo SG, editors. Minimally invasive urologic surgery. London: Taylor and Francis; 2005. p. 614–55.Google Scholar
  5. 5.
    Preminger GM, Assimos DG, Lingeman JE, Nakada SY, Pearle MS, Wolf JS Jr. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol. 2005;173(6):1991–2000.PubMedCrossRefGoogle Scholar
  6. 6.
    Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M, et al. 2007 guideline for the management of ureteral calculi. J Urol. 2007;178(6):2418–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Lingeman JE, Siegel YI, Steele B, Nyhuis AW, Woods JR. Management of lower pole nephrolithiasis: a critical analysis. J Urol. 1994;151(3):663–7.PubMedGoogle Scholar
  8. 8.
    Pearle MS, Lingeman JE, Leveillee R, Kuo R, Preminger GM, Nadler RB, et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol. 2005;173(6):2005–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Türk C, Knoll T, Petrik A, Sarica K, Straub M, Seitz C. Guidelines on urolithiasis. European Association of Urology. 2011;1–104. Available from: http://www.uroweb.org/gls/pdf/18_Urolithiasis.pdf
  10. 10.
    Tuckey J, Devasia A, Murthy L, Ramsden P, Thomas D. Is there a simpler method for predicting lower pole stone clearance after shockwave lithotripsy than measuring infundibulopelvic angle? J Endourol. 2000;14(6):475–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Elbahnasy AM, Clayman RV, Shalhav AL, Hoenig DM, Chandhoke P, Lingeman JE, et al. Lower-pole caliceal stone clearance after shockwave lithotripsy, percutaneous nephrolithotomy, and flexible ureteroscopy: impact of radiographic spatial anatomy. J Endourol. 1998;12(2):113–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta NP, Singh DV, Hemal AK, Mandal S. Infundibulopelvic anatomy and clearance of inferior caliceal calculi with shock wave lithotripsy. J Urol. 2000;163(1):24–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Keeley Jr FX, Moussa SA, Smith G, Tolley DA. Clearance of lower-pole stones following shock wave lithotripsy: effect of the infundibulopelvic angle. Eur Urol. 1999;36(5):371–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Madbouly K, Sheir KZ, Elsobky E. Impact of lower pole renal anatomy on stone clearance after shock wave lithotripsy: fact or fiction? J Urol. 2001;165(5):1415–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Sahinkanat T, Ekerbicer H, Onal B, Tansu N, Resim S, Citgez S, et al. Evaluation of the effects of relationships between main spatial lower pole calyceal anatomic factors on the success of shock-wave lithotripsy in patients with lower pole kidney stones. Urology. 2008;71(5):801–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Sumino Y, Mimata H, Tasaki Y, Ohno H, Hoshino T, Nomura T, et al. Predictors of lower pole renal stone clearance after extracorporeal shock wave lithotripsy. J Urol. 2002;168(4 Pt 1):1344–7.PubMedGoogle Scholar
  17. 17.
    Dretler SP. Stone fragility–a new therapeutic distinction. J Urol. 1988;139(5):1124–7.PubMedGoogle Scholar
  18. 18.
    Saw KC, Lingeman JE. Lesson 20 - management of calyceal calculi. AUA Update Series. 1999;20:154–9.Google Scholar
  19. 19.
    Nakada SY, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniak M. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000;55(6):816–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol. 1998;159(3):673–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Saw KC, McAteer JA, Monga AG, Chua GT, Lingeman JE, Williams Jr JC. Helical CT of urinary calculi: effect of stone composition, stone size, and scan collimation. AJR Am J Roentgenol. 2000;175(2):329–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Joseph P, Mandal AK, Singh SK, Mandal P, Sankhwar SN, Sharma SK. Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol. 2002;167(5):1968–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Shah K, Kurien A, Mishra S, Ganpule A, Muthu V, Sabnis RB, et al. Predicting effectiveness of extracorporeal shockwave lithotripsy by stone attenuation value. J Endourol. 2010;24(7):1169–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Gupta NP, Ansari MS, Kesarvani P, Kapoor A, Mukhopadhyay S. Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int. 2005;95(9):1285–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Manglaviti G, Tresoldi S, Guerrer CS, Di Leo G, Montanari E, Sardanelli F, et al. In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol. 2011;197(1):W76–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Stolzmann P, Kozomara M, Chuck N, Muntener M, Leschka S, Scheffel H, et al. In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging. 2010;35(5):629–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Fung GS, Kawamoto S, Matlaga BR, Taguchi K, Zhou X, Fishman EK, et al. Differentiation of kidney stones using dual-energy CT with and without a tin filter. AJR Am J Roentgenol. 2012;198(6):1380–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Pareek G, Hedican SP, Lee Jr FT, Nakada SY. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology. 2005;66(5):941–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Patel T, Kozakowski K, Hruby G, Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol. 2009;23(9):1383–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Weld KJ, Montiglio C, Morris MS, Bush AC, Cespedes RD. Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics. Urology. 2007;70(6):1043–6. discussion 1046–7.PubMedCrossRefGoogle Scholar
  31. 31.
    El-Nahas AR, El-Assmy AM, Mansour O, Sheir KZ. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol. 2007;51(6):1688–93. discussion 1693–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Jacobs BL, Smaldone MC, Smaldone AM, Ricchiuti DJ, Averch TD. Effect of skin-to-stone distance on shockwave lithotripsy success. J Endourol. 2008;22(8):1623–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Ng CF, Siu DY, Wong A, Goggins W, Chan ES, Wong KT. Development of a scoring system from noncontrast computerized tomography measurements to improve the selection of upper ureteral stone for extracorporeal shock wave lithotripsy. J Urol. 2009;181(3):1151–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Kanao K, Nakashima J, Nakagawa K, Asakura H, Miyajima A, Oya M, et al. Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol. 2006;176(4 Pt 1):1453–6. discussion 1456–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Kacker R, Zhao L, Macejko A, Thaxton CS, Stern J, Liu JJ, et al. Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success. J Urol. 2008;179(5):1866–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Wiesenthal JD, Ghiculete D, Ray AA, Honey RJ, Pace KT. A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol. 2011;186(2):556–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolf Jr JS, Bennett CJ, Dmochowski RR, Hollenbeck BK, Pearle MS, Schaeffer AJ. Best practice policy statement on urologic surgery antimicrobial prophylaxis. J Urol. 2008;179(4):1379–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Pearle MS, Roehrborn CG. Antimicrobial prophylaxis prior to shock wave lithotripsy in patients with sterile urine before treatment: a meta-analysis and cost-effectiveness analysis. Urology. 1997;49(5):679–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Graber M, Bjerklund-Johansen TE, Botto H, Cek M, Naber KG, Tenke P, et al. Guidelines on urological infection. European Association of Eurology. 2010;1–112. Available from: http://www.uroweb.org/gls/pdf/UrologicalInfections2010.pdf
  40. 40.
    de Cógáin M, Krambeck AE, Rule AD, Li X, Bergstralh EJ, Gettman MT, et al. Shock wave lithotripsy and diabetes mellitus: a population-based cohort study. Urology. 2012;79(2):298–302.PubMedCrossRefGoogle Scholar
  41. 41.
    Delius M, Enders G, Xuan ZR, Liebich HG, Brendel W. Biological effects of shock waves: kidney damage by shock waves in dogs–dose dependence. Ultrasound Med Biol. 1988;14(2):117–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Willis LR, Evan AP, Connors BA, Fineberg NS, Lingeman JE. Effects of SWL on glomerular filtration rate and renal plasma flow in uninephrectomized minipigs. J Endourol. 1997;11(1):27–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Morris JS, Husmann DA, Wilson WT, Preminger GM. Temporal effects of shock wave lithotripsy. J Urol. 1991;145(4):881–3.PubMedGoogle Scholar
  44. 44.
    Cohen TD, Durrani AF, Brown SA, Ferraro R, Preminger GM. Lipid peroxidation induced by shockwave lithotripsy. J Endourol. 1998;12(3):229–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Munver R, Delvecchio FC, Kuo RL, Brown SA, Zhong P, Preminger GM. In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol. J Urol. 2002;167(1):327–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Delvecchio FC, Brizuela RM, Khan SR, Byer K, Li Z, Zhong P, et al. Citrate and vitamin E blunt the shock wave-induced free radical surge in an in vitro cell culture model. Urol Res. 2005;33(6):448–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Yaman O, Sarica K, Ozer G, Soygur T, Kutsal O, Yaman LS, et al. Protective effect of verapamil on renal tissue during shockwave application in rabbit model. J Endourol. 1996;10(4):329–33.PubMedCrossRefGoogle Scholar
  48. 48.
    Strohmaier WL, Bichler KH, Koch J, Balk N, Wilbert DM. Protective effect of verapamil on shock wave induced renal tubular dysfunction. J Urol. 1993;150(1):27–9.PubMedGoogle Scholar
  49. 49.
    Chin CM, Tay KP, Ng FC, Lim PH, Chng HC. Use of patient-controlled analgesia in extracorporeal shockwave lithotripsy. Br J Urol. 1997;79(6):848–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Delakas D, Karyotis I, Daskalopoulos G, Lianos E, Mavromanolakis E. Independent predictors of failure of shockwave lithotripsy for ureteral stones employing a second-generation lithotripter. J Endourol. 2003;17(4):201–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Lingeman JE, Kim SC, Kuo RL, McAteer JA, Evan AP. Shockwave lithotripsy: anecdotes and insights. J Endourol. 2003;17(9):687–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Troy A, Jones G, Moussa SA, Smith G, Tolley DA. Treatment of lower ureteral stones using the Dornier Compact Delta lithotripter. J Endourol. 2003;17(6):369–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Zomorrodi A, Elahian A, Ghorbani N, Tavoosi A. Extracorporeal shock wave lithotripsy in prone and supine positions for patients with upper ureteral calculi. Urol J. 2006;3(3):130–3.PubMedGoogle Scholar
  54. 54.
    Hara N, Koike H, Bilim V, Takahashi K, Nishiyama T. Efficacy of extracorporeal shockwave lithotripsy with patients rotated supine or rotated prone for treating ureteral stones: a case-control study. J Endourol. 2006;20(3):170–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Duvall JO, Griffith DP. Epidural anesthesia for extracorporeal shock wave lithotripsy. Anesth Analg. 1985;64(5):544–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Kopacz DJ, Carpenter RL, Mulroy MF. The reliability of epidural anesthesia for repeat ESWL: a study of changes in epidural compliance. Reg Anesth. 1990;15(4):199–203.PubMedGoogle Scholar
  57. 57.
    London RA, Kudlak T, Riehle RA. Immersion anesthesia for extracorporeal shock wave lithotripsy. Review of two hundred twenty treatments. Urology. 1986;28(2):86–94.PubMedCrossRefGoogle Scholar
  58. 58.
    Malhotra V, Long CW, Meister MJ. Intercostal blocks with local infiltration anesthesia for extracorporeal shock wave lithotripsy. Anesth Analg. 1987;66(1):85–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Monk TG, Rater JM, White PF. Comparison of alfentanil and ketamine infusions in combination with midazolam for outpatient lithotripsy. Anesthesiology. 1991;74(6):1023–8.PubMedCrossRefGoogle Scholar
  60. 60.
    White PF, Negus JB. Sedative infusions during local and regional anesthesia: a comparison of midazolam and propofol. J Clin Anesth. 1991;3(1):32–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Monk TG, Boure B, White PF, Meretyk S, Clayman RV. Comparison of intravenous sedative-analgesic techniques for outpatient immersion lithotripsy. Anesth Analg. 1991;72(5):616–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Kortis HI, Amory DW, Wagner BK, Levin R, Wilson E, Levin A, et al. Use of patient-controlled analgesia with alfentanil for extracorporeal shock wave lithotripsy. J Clin Anesth. 1995;7(3):205–10.PubMedCrossRefGoogle Scholar
  63. 63.
    Osborne GA, Rudkin GE, Jarvis DA, Young IG, Barlow J, Leppard PI. Intra-operative patient-controlled sedation and patient attitude to control. A crossover comparison of patient preference for patient-controlled propofol and propofol by continuous infusion. Anaesthesia. 1994;49(4):287–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Uyar M, Uyar M, Uğur G, Bilge S, Ozyar B, Ozyurt C. Patient-controlled sedation and analgesia during SWL. J Endourol. 1996;10(5):407–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Joo HS, Perks WJ, Kataoka MT, Errett L, Pace K, Honey RJ. A comparison of patient-controlled sedation using either remifentanil or remifentanil-propofol for shock wave lithotripsy. Anesth Analg. 2001;93(5):1227–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Zommick J, Leveillee R, Zabbo A, Colasanto L, Barrette D. Comparison of general anesthesia and intravenous sedation-analgesia for SWL. J Endourol. 1996;10(6):489–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Sorensen C, Chandhoke P, Moore M, Wolf C, Sarram A. Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli 50 lithotriptor. J Urol. 2002;168(1):35–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee C, Weiland D, Ryndin I, Ugarte R, Monga M. Impact of type of anesthesia on efficacy of medstone STS lithotripter. J Endourol. 2007;21(9):957–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams Jr JC, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol. 2006;176(6 Pt 1):2706–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Neucks JS, Pishchalnikov YA, Zancanaro AJ, VonDerHaar JN, Williams Jr JC, McAteer JA. Improved acoustic coupling for shock wave lithotripsy. Urol Res. 2008;36(1):61–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol. 2004;172(1):349–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Maloney ME, Marguet CG, Zhou Y, Kang DE, Sung JC, Springhart WP, et al. Progressive increase of lithotripter output produces better in-vivo stone comminution. J Endourol. 2006;20(9):603–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Willis LR, Evan AP, Connors BA, Handa RK, Blomgren PM, Lingeman JE. Prevention of ­lithotripsy-induced renal injury by pretreating ­kidneys with low-energy shock waves. J Am Soc Nephrol. 2006;17(3):663–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int. 2009;103(1):104–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Demirci D, Altiok E, Gulmez I, Ekmekçioğlu O, Poyrazoğlu HM. Stepwise shock wave lithotripsy: results of initial study for the treatment of urinary stones in childhood. Int Urol Nephrol. 2006;38(2):189–92.PubMedCrossRefGoogle Scholar
  76. 76.
    Lambert EH, Walsh R, Moreno MW, Gupta M. Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J Urol. 2010;183(2):580–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Honey RJ, Ray AA, Ghiculete D. University of Toronto Lithotripsy Associates, Pace KT. Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation. Urology. 2010;75(1):38–43.PubMedCrossRefGoogle Scholar
  78. 78.
    Evan AP, McAteer JA, Connors BA, Blomgren PM, Lingeman JE. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJU Int. 2007;100(3):624–7. discussion 627–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Paterson RF, Kuo RL, Lingeman JE. The effect of rate of shock wave delivery on the efficiency of lithotripsy. Curr Opin Urol. 2002;12(4):291–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Honey RJ, Schuler TD, Ghiculete D, Pace KT, Canadian Endourology Group. A randomized, double-blind trial to compare shock wave frequencies of 60 and 120 shocks per minute for upper ureteral stones. J Urol. 2009;182(4):1418–23.PubMedCrossRefGoogle Scholar
  81. 81.
    Davenport K, Minervini A, Keoghane S, Parkin J, Keeley FX, Timoney AG. Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. J Urol. 2006;176(5):2055–8. discussion 2058.PubMedCrossRefGoogle Scholar
  82. 82.
    Madbouly K, El-Tiraifi AM, Seida M, El-Faqih SR, Atassi R, Talic RF. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol. 2005;173(1):127–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Yilmaz E, Batislam E, Basar M, Tuglu D, Mert C, Basar H. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology. 2005;66(6):1160–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol. 2008;179(1):194–7. discussion 197.PubMedCrossRefGoogle Scholar
  85. 85.
    Nicely ER, Maggio MI, Kuhn EJ. The use of a cystoscopically placed cobra catheter for directed irrigation of lower pole caliceal stones during extracorporeal shock wave lithotripsy. J Urol. 1992;148(3 Pt 2):1036–9.PubMedGoogle Scholar
  86. 86.
    Graham JB, Nelson JB. Percutaneous caliceal irrigation during extracorporeal shock wave lithotripsy for lower pole renal calculi. J Urol. 1994;152(6 Pt 2):2227.PubMedGoogle Scholar
  87. 87.
    Kosar A, Oztürk A, Serel TA, Akkus S, Unal OS. Effect of vibration massage therapy after extracorporeal shockwave lithotripsy in patients with lower caliceal stones. J Endourol. 1999;13(10):705–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Brownlee N, Foster M, Griffith DP, Carlton Jr CE. Controlled inversion therapy: an adjunct to the elimination of gravity-dependent fragments following extracorporeal shock wave lithotripsy. J Urol. 1990;143(6):1096–8.PubMedGoogle Scholar
  89. 89.
    Pace KT, Tariq N, Dyer SJ, Weir MJ, D’A Honey RJ. Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol. 2001;166(6):2065–71.PubMedCrossRefGoogle Scholar
  90. 90.
    Chiong E, Hwee ST, Kay LM, Liang S, Kamaraj R, Esuvaranathan K. Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology. 2005;65(6):1070–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Hollingsworth JM, Rogers MA, Kaufman SR, Bradford TJ, Saint S, Wei JT, et al. Medical therapy to facilitate urinary stone passage: a meta-analysis. Lancet. 2006;368(9542):1171–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Schuler TD, Shahani R, Honey RJ, Pace KT. Medical expulsive therapy as an adjunct to improve shockwave lithotripsy outcomes: a systematic review and meta-analysis. J Endourol. 2009;23(3):387–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Gravina GL, Costa AM, Ronchi P, Galatioto GP, Angelucci A, Castellani D, et al. Tamsulosin treatment increases clinical success rate of single extracorporeal shock wave lithotripsy of renal stones. Urology. 2005;66(1):24–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Gravas S, Tzortzis V, Karatzas A, Oeconomou A, Melekos MD. The use of tamsulozin as adjunctive treatment after ESWL in patients with distal ureteral stone: do we really need it? Results from a randomised study. Urol Res. 2007;35(5):231–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Porpiglia F, Destefanis P, Fiori C, Scarpa RM, Fontana D. Role of adjunctive medical therapy with nifedipine and deflazacort after extracorporeal shock wave lithotripsy of ureteral stones. Urology. 2002;59(6):835–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Soygür T, Akbay A, Küpeli S. Effect of potassium citrate therapy on stone recurrence and residual fragments after shockwave lithotripsy in lower caliceal calcium oxalate urolithiasis: a randomized controlled trial. J Endourol. 2002;16(3):149–52.PubMedCrossRefGoogle Scholar
  97. 97.
    Arrabal-Martín M, Fernández-Rodríguez A, Arrabal-Polo MA, Garcií-Ruiz MJ, Zuluaga-Gómez A. Extracorporeal renal lithotripsy: evolution of residual lithiasis treated with thiazides. Urology. 2006;68(5):956–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Streem SB, Yost A, Mascha E. Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lithotripsy. J Urol. 1996;155(4):1186–90.PubMedCrossRefGoogle Scholar
  99. 99.
    El-Nahas AR, El-Assmy AM, Madbouly K, Sheir KZ. Predictors of clinical significance of residual fragments after extracorporeal shockwave lithotripsy for renal stones. J Endourol. 2006;20(11):870–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Osman MM, Alfano Y, Kamp S, Haecker A, Alken P, Michel MS, et al. 5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy. Eur Urol. 2005;47(6):860–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Fine JK, Pak CY, Preminger GM. Effect of medical management and residual fragments on recurrent stone formation following shock wave lithotripsy. J Urol. 1995;153(1):27–32. discussion 32–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Yoshida S, Hayashi T, Ikeda J, Yoshinaga A, Ohno R, Ishii N, et al. Role of volume and attenuation value histogram of urinary stone on noncontrast helical computed tomography as predictor of fragility by extracorporeal shock wave lithotripsy. Urology. 2006;68(1):33–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Perks AE, Gotto G, Teichman JM. Shock wave lithotripsy correlates with stone density on preoperative computerized tomography. J Urol. 2007;178(3 Pt 1):912–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, D’A Honey RJ, et al. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology. 2008;72(4):765–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int. 2009;103(4):524–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Wiesenthal JD, Ghiculete D, D’A Honey RJ, Pace KT. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res. 2010;38(4):307–13.PubMedCrossRefGoogle Scholar
  107. 107.
    Park YI, Yu JH, Sung LH, Noh CH, Chung JY. Evaluation of possible predictive variables for the outcome of shock wave lithotripsy of renal stones. Korean J Urol. 2010;51(10):713–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Park BH, Choi H, Kim JB, Chang YS. Analyzing the effect of distance from skin to stone by computed tomography scan on the extracorporeal shock wave lithotripsy stone-free rate of renal stones. Korean J Urol. 2012;53(1):40–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Graversen JA, Korets R, Hruby GW, Valderrama OM, Mues AC, Katsumi HK, et al. Evaluation of bioimpedance as novel predictor of extracorporeal shockwave lithotripsy success. J Endourol. 2011;25(9):1503–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Kobayashi M, Naya Y, Kino M, Awa Y, Nagata M, Suzuki H, et al. Low dose tamsulosin for stone expulsion after extracorporeal shock wave lithotripsy: efficacy in Japanese male patients with ureteral stone. Int J Urol. 2008;15(6):495–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Bhagat SK, Chacko NK, Kekre NS, Gopalakrishnan G, Antonisamy B, Devasia A. Is there a role for ­tamsulosin in shock wave lithotripsy for renal and ureteral calculi? J Urol. 2007;177(6):2185–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Küpeli B, Irkilata L, Gürocak S, Tunc L, Kirac M, Karaoglan U, et al. Does tamsulosin enhance lower ureteral stone clearance with or without shock wave lithotripsy? Urology. 2004;64(6):1111–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Naja V, Agarwal MM, Mandal AK, Singh SK, Mavuduru R, Kumar S, et al. Tamsulosin facilitates earlier clearance of stone fragments and reduces pain after shockwave lithotripsy for renal calculi: results from an open-label randomized study. Urology. 2008;72(5):1006–11.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang HJ, Liu K, Ji ZG, Li HZ. Application of Alpha1-adrenergic antagonist with extracorporeal shock wave lithotripsy for lower ureteral stone. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2008;30(4):506–8.PubMedGoogle Scholar
  115. 115.
    Hussein MM. Does tamsulosin increase stone clearance after shockwave lithotripsy of renal stones? A prospective, randomized controlled study. Scand J Urol Nephrol. 2010;44(1):27–31.PubMedCrossRefGoogle Scholar
  116. 116.
    Falahatkar S, Khosropanah I, Vajary AD, Bateni ZH, Khosropanah D, Allahkhah A. Is there a role for tamsulosin after shock wave lithotripsy in the treatment of renal and ureteral calculi? J Endourol. 2011;25(3):495–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Agarwal MM, Naja V, Singh SK, Mavuduru R, Mete UK, Kumar S, et al. Is there an adjunctive role of tamsulosin to extracorporeal shockwave lithotripsy for upper ureteric stones: results of an open label randomized nonplacebo controlled study. Urology. 2009;74(5):989–92.PubMedCrossRefGoogle Scholar
  118. 118.
    Moursy E, Gamal WM, Abuzeid A. Tamsulosin as an expulsive therapy for steinstrasse after extracorporeal shock wave lithotripsy: a randomized ­controlled study. Scand J Urol Nephrol. 2010;44(5):315–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Georgiev MI, Ormanov DI, Vassilev VD, Dimitrov PD, Mladenov VD, Popov EP, et al. Efficacy of tamsulosin oral controlled absorption system after extracorporeal shock wave lithotripsy to treat urolithiasis. Urology. 2011;78(5):1023–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Micali S, Grande M, Sighinolfi MC, De Stefani S, Bianchi G. Efficacy of expulsive therapy using nifedipine or tamsulosin, both associated with ketoprofene, after shock wave lithotripsy of ureteral stones. Urol Res. 2007;35(3):133–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Vicentini FC, Mazzucchi E, Brito AH, Chedid Neto EA, Danilovic A, Srougi M. Adjuvant tamsulosin or nifedipine after extracorporeal shock wave lithotripsy for renal stones: a double blind, randomized, placebo-controlled trial. Urology. 2011;78(5):1016–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Margaret S. Pearle
    • 1
    Email author
  • Jodi Antonelli
    • 1
  • Paurush Babbar
    • 2
  1. 1.Department of UrologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of UrologyWake Forest School of MedicineWinston SalemUSA

Personalised recommendations