Skip to main content

Natural Attenuation Of Chlorinated Solvent Source Zones

  • Chapter
  • First Online:
Chlorinated Solvent Source Zone Remediation

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 7))

Abstract

At a site where groundwater is contaminated by chlorinated solvents, the spatial distribution of contamination and the persistence of the contamination over time is controlled by the interaction between the rate of natural attenuation in groundwater and the rate of natural attenuation of the source. Recent advances make it possible to describe and forecast the rate of natural attenuation of the source. This information makes it possible at many sites to include attenuation of the sources as part of a natural attenuation remedy. At other sites it may be possible to optimize the extent of active remediation of the source that is necessary to achieve a final remedy at a site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Adamson DT, McGuire TM, Newell CJ, Stroo H. 2011. Sustained treatment: Implications for treatment timescales associated with source depletion technologies. Remediat J 21:27–50.

    Article  Google Scholar 

  • AECOM. 2009. Remedial Action Cost Engineering and Requirements (RACER™) software, version 10.2. Los Angeles, CA, USA.

    Google Scholar 

  • AFCEE (Air Force Center for Engineering and the Environment). 2010. Sustainable Remediation Tool (SRT). Version 2.1. http://www.afcee.af.mil/resources/technologytransfer/programsandinitiatives/sustainableremediation/srt/index.asp. Accessed January 2, 2013.

  • Anderson MR, Johnson RL, Pankow JF. 1992. Dissolution of dense chlorinated solvents into groundwater, 3, Modeling contaminant plumes from fingers and pools of solvent. Environ Sci Technol 26:901–908.

    Article  CAS  Google Scholar 

  • Aziz CE, Newell CJ, Gonzales JR, Haas PE, Clement TP, Sun Y. 2000a. BIOCHLOR Natural Attenuation Decision Support System, User’s Manual, Version 1.0. EPA/600/R-00/008. USEPA, Washington DC, USA. www.gsi-net.com. Accessed January 2, 2013.

  • Aziz JJ, Newell CJ, Rifai HS, Ling M, Gonzales JR. 2000b. Monitoring and Remediation Optimization System (MAROS), Software User’s Guide. www.gsi-net.com. Accessed January 2, 2013.

  • Aziz JJ, Ling M, Rifai HS, Newell CJ, Gonzales JR. 2003. MAROS: A decision support system for optimizing monitoring plans. Ground Water 41:355–367.

    Article  CAS  Google Scholar 

  • Battelle. 2011. SiteWise Version 2, User Guide. Developed for the Naval Facilities Engineering Command, Port Hueneme, CA, USA. https://portal.navfac.navy.mil/portal/page/portal/navfac/navfac_ww_pp/navfac_nfesc_pp/environmental/erb/resourceerb/ug-2092-env_sitewisetm-v2_2011-06.pdf. Accessed February 2 2013.

  • Brown RA, Wilson JT, Ferrey M. 2007. Monitored natural attenuation forum: The case for abiotic MNA. Remediat J 17:127–137.

    Article  Google Scholar 

  • Chapelle FH, Widdowson MA, Brauner JS, Mendez E, Casey CC. 2003. Methodology for estimating times of remediation associated with monitored natural attenuation: U.S. Geological Survey Water-Resources Investigations Report 03-4057. http://pubs.usgs.gov/wri/wri034057. Accessed September 30, 2013.

  • Chapman SW, Parker BL. 2005. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid removal or isolation. Water Resour Res 41:W12411.

    Google Scholar 

  • Chen W, Kan AT, Newell CJ, Moore E, Tomson MB. 2002. More realistic soil cleanup standards with dual-equilibrium desorption. Ground Water 40:153–164.

    Article  CAS  Google Scholar 

  • Christ J, Lemke L, Abriola L. 2008. The influence of dimensionality on simulations of mass recovery from nonuniform dense non-aqueous phase liquid (DNAPL) source zones. Adv Water Resour 32:401–412.

    Article  CAS  Google Scholar 

  • Connor J, Farhat S, Vanderford M, Newell C. 2012. GSI Mann-Kendall Toolkit. GSI Environmental Inc., Houston, TX, USA. http://www.gsi-net.com/en/software/free-software/gsi-mann-kendall-toolkit.html. Accessed March 14, 2013.

  • CRWQCB (California Regional Water Quality Control Board). 2009. Assessment Tool for Closure of Low-Threat Chlorinated Solvent Sites. San Francisco Bay Region, San Francisco, CA, USA.

    Google Scholar 

  • CSGSS (Center for Sustainable Groundwater & Soil Solutions). 2011. Practical Models for Supporting Remediation of Chlorinated Solvents. Short course. Aiken, SC, USA. www.gsi-net.com

  • DiFilippo EL, Brusseau ML. 2008. Relationship between mass-flux reduction and source-zone mass removal: Analysis of field data. J Contam Hydrol 98:22–35.

    Article  CAS  Google Scholar 

  • Doner L, Sale T. 2008. Back Diff Video Movie, Colorado State University Center for Contaminant Hydrology. http://www.serdp-estcp.org/Tools-and-Training/Environmental-Restoration/DNAPL-Source-Zones/Chlorinated-Solvents-On-Demand-Video. Accessed March 14, 2013.

  • ESTCP (Environmental Security Technology Certification Program). 2013. Determining Source Attenuation History to Support Closure by Natural Attenuation. ER-201032. Project conducted by GSI Environmental, University of Guelph, and Colorado State University. http://www.serdp.org/. Accessed January 30, 2014.

  • ESTCP. 2014. Assessment of the Natural Attenuation of NAPL Source Zones and Post-Treatment NAPL Source Zone Residuals. Project ER-0705. http://www.serdp.org/. Accessed January 12, 2014.

  • Falta RW, Rao PSC, Basu N. 2005a. Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response. J Contam Hydrol 78:259–280.

    Article  CAS  Google Scholar 

  • Falta RW, Basu N, Rao PSC. 2005b. Assessing the impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution. J Contam Hydrol 79:45–66.

    Article  CAS  Google Scholar 

  • Falta RW, Stacy MB, Ahsanuzzaman ANM, Wang M, Earle RC. 2007. REMChlor: Remediation Evaluation Model for Chlorinated Solvents, User’s Manual Version 1.0. www.epa.gov/ada/csmos/models/remchlor.html. Accessed August 9, 2012.

  • Farhat SK, de Blanc PC, Newell CJ, Gonzales JR, Perez J. 2004. SourceDK Remediation Timeframe Decision Support System, User’s Manual, April 2004. www.gsi-net.com. Accessed August 9, 2012.

  • Farhat SK, Newell CJ, Nichols E. 2006. Mass Flux Toolkit To Evaluate Groundwater Impacts, Attenuation, and Remediation Alternatives. Groundwater Services, Houston, TX, USA. www.gsi-net.com. Accessed August 9, 2012.

  • Farhat SK, Newell CJ, Vanderford MV, McHugh TE, Mahler NT, Gillespie JL, Jurena PN, Bodour AA. 2012. Low-Risk Site Closure Guidance Manual to Accelerate Closure of Conventional and Performance Based Contract Sites. GSI Environmental, Houston, TX, USA.

    Google Scholar 

  • Ferrey ML, Wilkin RT, Ford RG, Wilson JT. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.

    Article  CAS  Google Scholar 

  • Fure AD, Jawitz JW, Annable MD. 2006. DNAPL source depletion: Linking architecture and flux response. J Contam Hydrol 85:118–140.

    Article  CAS  Google Scholar 

  • Gerhard JI, Pang T, Kueper BH. 2007. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation. Ground Water 45:147–157.

    Article  CAS  Google Scholar 

  • Grant GP, Gerhard JI, Kueper BH. 2007. Multidimensional validation of a numerical model for simulating a DNAPL release in heterogeneous porous media. J Contam Hydrol 92:109–128.

    Article  CAS  Google Scholar 

  • He Y, Su C, Wilson J, Wilkin R, Adair C, Lee T, Bradley P, Ferrey M. 2009. Identification and characterization methods for reactive minerals responsible for natural attenuation of chlorinated organic compounds in ground water. EPA 600/R-09/115. USEPA, Washington, DC, USA.

    Google Scholar 

  • Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL. 2004. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J Contam Hydrol 74:265–282.

    Article  CAS  Google Scholar 

  • Hunkeler D, Meckenstock RU, Sherwood-Lollar B, Schmidt TC, Wilson JT. 2008. A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). EPA 600-R-08-148. USEPA, Ada, OK, USA. 82 p.

    Google Scholar 

  • Hunter P. 2004. Overview of Air Force Long-Term Monitoring Optimization, Programs and Case Studies. Center for Environmental Excellence, Brooks Air Force Base, TX, USA. www.clu-in.org/siteopt/proceedings_04/track_b/wed/18_hunter_philip.pdf.

  • ITRC (Interstate Technology & Regulatory Council). 2008. Enhanced Attenuation: Chlorinated Organics. EACO-1. Washington, DC, USA.

    Google Scholar 

  • ITRC. 2009. Evaluating Natural Source Zone Depletion at Sites with LNAPL. LNAPL-1. Washington, DC, USA.

    Google Scholar 

  • ITRC. 2010. Use and Measurement of Mass Flux and Mass Discharge. MASSFLUX-.1. Washington, DC, USA.

    Google Scholar 

  • ITRC. 2011. Integrated DNAPL Site Strategy Technical/Regulatory Guidance. IDSS-1 Washington, DC, USA.

    Google Scholar 

  • Johnson P, Lundegard P, Liu Z. 2006. Source zone natural attenuation at petroleum hydrocarbon spill sites. I: Site-specific assessment approach. Ground Water Monit Remediat 26:82–92.

    Article  CAS  Google Scholar 

  • Kamath RK, Newell CJ, Looney BB, Vangelas KM, Adamson DT. 2006. BioBalance – A Mass Balance Toolkit, User’s Manual. http://www.gsi-net.com/en/software/free-software/biobalance-toolkit.html. Accessed March 14, 2013.

  • Kampara M, Thullner M, Richnow HH, Harms H, Lukas Y Wick LY. 2008. Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 2. Experimental evidence. Environ Sci Technol 42:6552–6558.

    Article  CAS  Google Scholar 

  • Kan AT, Fu G, Hunter M, Chen W, Ward CH, Tomson MB. 1998. Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions. Environ Sci Technol 32:892–902.

    Article  CAS  Google Scholar 

  • Kennedy LG, Everett JW, Gonzales J. 2006. Assessment of biogeochemical natural attenuation and treatment of chlorinated solvents, Altus Air Force Base, Altus, Oklahoma. J Contam Hydrol 83:221–236.

    Article  CAS  Google Scholar 

  • Kueper BH, Gerhard JI. 1995. Variability of point source infiltration rates for two-phase flow in heterogeneous porous media. Water Resour Res 31:2971–2980.

    Article  Google Scholar 

  • Kueper BH, Redman D, Starr RC, Reitsma S, Mah M. 1993. A field experiment to study the behavior of tetrachloroethylene below the water table: Spatial distribution of residual and pooled DNAPL. Ground Water 31:756–766.

    Article  CAS  Google Scholar 

  • Kueper BH, Stroo HF, Vogel CM, Ward CH. 2014. Source Zone Remediation: The State of the Practice. Chapter 1 in Chlorinated Solvent Source Zone Remediation. In Ward CH, ed, SERDP/ESTCP Remediation Technology Monograph Series. Springer Science + Business Media, LLC, New York, NY, USA.

  • Liang H, Falta R, Newell C, Farhat S, Rao S, Basu N. 2010. Decision and Management Tools for DNAPL Sites: Optimization of Chlorinated Solvent Source and Plume Remediation Considering Uncertainty (Final Report). ESTCP Project ER-0704. ESTCP, Arlington, VA, USA.

    Google Scholar 

  • Lima GU, Parker B, Meyer J. 2011. Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. Environ Sci Technol 46:5756–5763.

    Article  CAS  Google Scholar 

  • Linz DG, Nakles DV, eds. 1997. Environmentally Acceptable Endpoints in Soil. American Academy of Environmental Engineering, Annapolis, MD, USA.

    Google Scholar 

  • Lipson D, Kueper BH, Gefell MJ. 2005. Matrix diffusion-derived plume attenuation in fractured bedrock. Ground Water 43:30–39.

    Article  CAS  Google Scholar 

  • Liu C, Ball WP. 1999. Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware. Water Resour Res 35:1975–1985.

    Article  CAS  Google Scholar 

  • Lollar BS, Slater GF, Sleep B, Witt M, Klecka GM, Harkness M, Spivack J. 2001. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. Environ Sci Technol 35:261–269.

    Article  CAS  Google Scholar 

  • Lundegard PD, Johnson PC. 2006. Source zone natural attenuation at petroleum hydrocarbon spill sites II: Application to a former oil field. Ground Water Monit Remed 26:93–106.

    Article  CAS  Google Scholar 

  • McGuire TM, Newell CJ, Looney, BB Vangelas KM. 2003. Historical and retrospective survey of monitored natural attenuation: A line of inquiry supporting monitored natural attenuation and enhanced passive remediation of chlorinated solvents. WSRC-TR-2003-00333, Westinghouse Savannah River Company, U.S. Department of Energy, Aiken, SC USA.

    Google Scholar 

  • McGuire TM, Newell CJ, Looney BB, Vangelas KM, Sink CH. 2004. Historical analysis of monitored natural attenuation: A survey of 191 chlorinated solvent sites and 45 solvent plumes. Remediat J 15:99–112.

    Article  Google Scholar 

  • McHugh T, Beckley L, Liu C, Newell C. 2012. Factors influencing variability in groundwater monitoring data sets. Groundwater Monit Remediat 31:92–101.

    Article  Google Scholar 

  • McNabb WW, Rice DW, Bear J, Ragaini R, Tuckfield C, Oldenburg C. 1999. Historical Case Analysis of Chlorinated Volatile Organic Compound Plumes. Lawrence Livermore National Laboratory, Livermore, CA, USA.

    Google Scholar 

  • Miller CT, Poirier-McNeil MM, Mayer AS. 1990. Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resour Res 26:2783–2796.

    Article  Google Scholar 

  • Millington RJ, Quirk JM. 1961. Permeability of porous solids. Trans Faraday Soc 57:1200–1207.

    Article  CAS  Google Scholar 

  • Murphy B L, Morrison RD. 2002. Environmental Forensics. Academic Press, London, UK.

    Google Scholar 

  • Newell C. 2011. Overview of Matrix Diffusion Processes and Its Effects on Managing Chlorinated Solvent Sites. Webinar presentation to USEPA, May 5, 2011. http://www.gsi-net.com/en/publications/gsi-environmental-papers.html?year=2011. Accessed March 14, 2013.

  • Newell CJ, Adamson DT. 2005. Planning-level source decay models to evaluate impact of source depletion on remediation time frame. Remediat J 15:27–47.

    Article  Google Scholar 

  • Newell CJ, Gonzales J, McLeod R. 1996. BIOSCREEN Natural Attenuation Decision Support System. U.S. Environmental Protection Agency. EPA/600/R-96/087. August.

    Google Scholar 

  • Newell CJ, Aziz CA, Cox GA. 2003. Enhanced Anaerobic Treatment Zones in Groundwater. U.S. Patent No. 6562235.

    Google Scholar 

  • Newell CJ, Cowie I, McGuire TM, McNabb W. 2006. Multiyear temporal changes in chlorinated solvent concentrations at 23 MNA sites. J Environ Eng 132:653–663.

    Article  CAS  Google Scholar 

  • Newell CJ, Farhat SK, Adamson DT, Looney BB. 2011. Contaminant plume classification system based on mass discharge. Ground Water 49:914–919.

    Article  CAS  Google Scholar 

  • NRC (National Research Council). 2000. Natural Attenuation for Groundwater Remediation. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • NRC. 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • NRC. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • NRC. 2012. Alternatives for Managing the Nation’s Complex Contaminated Groundwater Sites. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • O’Carroll DM, Sleep BE. 2007. Hot water flushing for immiscible displacement of a viscous NAPL. J Contam Hydrol 91:247–266.

    Article  CAS  Google Scholar 

  • Parker JC, Park E. 2004. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers Water Resour Res 40:W05109.

    Article  Google Scholar 

  • Parker BL, Gillham RW, Cherry JA. 1994. Diffusive disappearance of immiscible-phase organic liquids in fractured geologic media. Ground Water 32:805–820.

    Article  CAS  Google Scholar 

  • Peck RB. 1969. Advantages and limitations of the observational method in applied soil mechanics. Geotechnique 19:171–187.

    Article  Google Scholar 

  • Pope D, Acree S, Levine H, Mangion S, van Ee J, Hurt K, Wilson B. 2004. Performance monitoring of MNA remedies for VOCs in ground water. EPA/600/R-04/027. USEPA, Washington, DC, USA. http://www.epa.gov/ada/gw/mna.html. Accessed January 3, 2013.

  • Pope G, Delshad M. 2000. Volume I: User’s Guide for UTCHEM-9.0, A three-dimensional chemical flood simulator. Reservoir Engineering Research Program, University of Texas at Austin, Austin, TX, USA. 153 p.

    Google Scholar 

  • Poulsen M, Kueper BH., 1992. A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ Sci Technol 26:889–895.

    Article  CAS  Google Scholar 

  • Pruess K, Battistelli A. 2002. TMVOC, A numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media. LBNL-49375. Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

    Google Scholar 

  • Rao PSC, Jawitz JW, Enfield CG, Falta RW, Annable MD, Wood AL. 2001. Technology integration for contaminated site remediation: Cleanup goals and performance criteria. In Thornton S, Oswald S, eds. Groundwater Quality 2001: Natural and Enhanced Restoration of Groundwater Pollution. Int Ass Hydrological Sciences. 273:571–578.

    Google Scholar 

  • Rao PSC, Jawitz JW. 2003. Comment on “Steady-state mass transfer from single-component dense non-aqueous phase liquids in uniform flow fields” by T. C. Sale & D. B. McWhorter. Water Resour Res 39:1068.

    Google Scholar 

  • Rivett M, Feenstra S, Cherry J. 2001. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: Creation of the emplaced-source and overview of dissolved plume development. J Contam Hydrol 49:111–149.

    Article  CAS  Google Scholar 

  • Sale TC, McWhorter DB. 2001. Steady state mass transfer from single-component dense nonaqueous phase liquids in uniform flow fields. Water Resour Res 37:393–404.

    Article  Google Scholar 

  • Sale T, Newell C, Stroo H, Hinchee R, Johnson P. 2008a. Frequently Asked Questions Regarding Management of Chlorinated Solvent in Soils and Groundwater. Environmental Security Testing and Certification Program, Arlington, VA, USA. http://www.serdp.org/. Accessed January 30, 2014.

  • Sale T, Zimbron J, Dandy D. 2008b. Effects of reduced contaminant loading on downgradient water quality in an idealized two layer system. J Contam Hydrol 102:72–85.

    Article  CAS  Google Scholar 

  • Scheutz C, Broholm MM, Durant ND, Begtrup Weeth E, Jorgensen TH, Dennis P, Jacobsen CS, Cox EE, Chambon JC, Bjerg PL. 2010. Field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till. Environ Sci Technol 44:5134–5141.

    Article  CAS  Google Scholar 

  • Seyedabbasi MA, Newell CJ, Adamson DT, Sale TC. 2012. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. J Contam Hydrol 134–135:69–81.

    Article  CAS  Google Scholar 

  • Suchomel E, Pennell K. 2006. Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones. Environ Sci Technol 40:6110–6116.

    Article  CAS  Google Scholar 

  • Takeuchi M, Kawabe Y, Watanabe E, Oiwa T, Takahashi M, Nanba K, Kamagata Y, Hanada S, Ohko Y, Komai T. 2011. Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard. J Contam Hydrol 124:14–24.

    Article  CAS  Google Scholar 

  • Terzaghi K, Peck RB. 1948. Soil Mechanics in Engineering Practice. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Thullner M, Kampara M, Richnow HH, Harms H, Wick LY. 2008. Impact of bioavailability restrictions on microbially induced stable isotope fractionation: 1. Theoretical calculation. Environ Sci Technol 42:6544–6551.

    Article  CAS  Google Scholar 

  • TNRCC (Texas Natural Resources Conservation Commission). 2001. Monitored natural attenuation demonstrations. RG-366/TRPP-33. Austin, TX, USA. http://www.tceq.texas.gov/publications/rg/rg-366_trrp_33.html/view. Accessed January 3, 2013.

  • USEPA (U.S. Environmental Protection Agency). 1991. A guide to principal threat and low level threat wastes. Superfund Publication 9380.3-06FS. Fact Sheet, November. Office of Emergency Remedial Response. Washington, DC, USA.

    Google Scholar 

  • USEPA. 1998. Seminars: Monitored Natural Attenuation for Ground Water. EPA/625/K-98/001. Washington, DC, USA.

    Google Scholar 

  • USEPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. OSWER Directive 9200.4-17P. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2001. Monitored Natural Attenuation: USEPA Research Program – an EPA Science Advisory Board Review. EPA-SAB-EEC-01-004. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2002. Calculation and Use of First-Order Rate Constants For Monitored Natural Attenuation Studies. EPA/540/S-02/500. Washington, DC, USA. http://www.epa.gov/ada/pubs/issue.html. Accessed January 4, 2013.

  • USEPA. 2007. REMChlor Version 1.0 – December 2007. http://www.epa.gov/ada/csmos/models/remchlor.html. Accessed January 4, 2013.

  • West MR, Kueper BH. 2010. Plume detachment and recession times in fractured rock. Ground Water 48:416–426.

    Article  CAS  Google Scholar 

  • West MR, Grant GP, Gerhard JI, Kueper BH. 2008. The influence of precipitate formation on the chemical oxidation of TCE DNAPL with potassium permanganate. Adv Water Res 31:324–338.

    Article  CAS  Google Scholar 

  • Widdowson MA, Mendez E III, Chapelle FH, Casey CC. 2005. Natural Attenuation Software (NAS) User’s Manual Version 2. http://www.nas.cee.vt.edu. Accessed January 4, 2013.

  • Wiedemeier TH, Rifai HS, Newell CJ, Wilson J. 1999. Natural Attenuation of Fuels and Chlorinated Solvents. John Wiley & Sons, New York, NY, USA.

    Book  Google Scholar 

  • Wilson JT. 2011. An Approach for Evaluating the Progress of Natural Attenuation in Groundwater. EPA/600/R-11/204. Office of Research and Development, USEPA, Washington, DC, USA.

    Google Scholar 

  • Wilson JT, Kaiser PM, Adair C. 2005. Monitored Natural Attenuation of MTBE as a Risk Management Option at Leaking Underground Storage Tank Sites EPA600/R-04/179. http://www.epa.gov/ada/gw/mna.html. Accessed January 29, 2014.

  • Zhu J, Sykes JF. 2004. Simple screening models of NAPL dissolution in the subsurface. J Contam Hydrol 72:245–258.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Newell, C.J., Kueper, B.H., Wilson, J.T., Johnson, P.C. (2014). Natural Attenuation Of Chlorinated Solvent Source Zones. In: Kueper, B., Stroo, H., Vogel, C., Ward, C. (eds) Chlorinated Solvent Source Zone Remediation. SERDP ESTCP Environmental Remediation Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6922-3_13

Download citation

Publish with us

Policies and ethics