Skip to main content

Surfactant And Cosolvent Flushing

  • Chapter
  • First Online:
Book cover Chlorinated Solvent Source Zone Remediation

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 7))

Abstract

When properly implemented, surfactant and cosolvent flushing technologies can recover substantial quantities of contaminant mass from chlorinated solvent source zones in relatively short time periods. As with most in situ remediation technologies, surfactant and cosolvent flushing are most effective in relatively homogeneous subsurface systems with sufficient permeability to allow for delivery of injected fluid and subsequent recovery of the contaminant. Under ideal conditions, surfactant and cosolvent flushing field trials have consistently resulted in contaminant mass recoveries of greater than 80 to 90% of the contaminant mass, although recoveries on the order of 50 to 70% are more likely at complex sites. Nevertheless, such reductions in contaminant mass hold the potential to reduce source zone longevity and downgradient contaminant mass flux, thereby reducing potential risks to the environment and public health. Recent advances in these technologies have focused on combining aggressive, short-term surfactant flushing technologies with lower impact, long-term strategies such as bioremediation, which hold promise as a means to more effectively achieve remediation goals and reduce overall treatment costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Advanced Applied Technology Demonstration Facility (AATDF). 1997. Technology Practices Manual for Surfactants and Cosolvents. Houston, TX, USA. http://www.clu-in.org/PRODUCTS/AATDF/toc.htm. Accessed September 16, 2013.

  • Abdul AS, Ang CC. 1994. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated field site: Phase II pilot study. Ground Water 32:727–734.

    Article  CAS  Google Scholar 

  • Abdul AS, Gibson TL, Ang CC, Smith JC, Sobczynski RE. 1992. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated site. Ground Water 30:219–231.

    Article  CAS  Google Scholar 

  • Abrams DS, Prausnitz JM. 1975. Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems. AIChE J 21:116–128.

    Article  CAS  Google Scholar 

  • Abriola LM, Lang JR, Rathfelder K. 1997. Michigan soil-vapor extraction remediation (miser) model - a computer program to model bioventing of organic chemicals in unsaturated geological material. EPA/600R-97/099. U.S. Environmental Protection Agency, Ada, OK, USA.

    Google Scholar 

  • Abriola LM, Drummond CD, Hahn EJ, Hayes KF, Kibbey TCG, Lemke LD, Pennell KD, Petrovskis EA, Ramsburg CA, Rathfelder KM. 2005. Pilot-scale demonstration of surfactant-enhanced pce solubilization at the bachman road site. 1. Site characterization and test design. Environ Sci Technol 39:1778–1790.

    Article  CAS  Google Scholar 

  • Adeel Z, Luthy RG. 1995. Sorption and transport kinetics of a nonionic surfactant through an aquifer sediment. Environ Sci Technol 29:1032–1042.

    Article  CAS  Google Scholar 

  • Amos BK, Daprato RC, Hughes JB, Pennell KD, Löffler FE. 2007. Effects of the nonionic surfactant tween 80 on microbial reductive dechlorination of chlorinated ethenes. Environ Sci Technol 41:1710–1716.

    Article  CAS  Google Scholar 

  • Annable MD, Rao PSC, Hatfield K, Graham WD, Wood AL, Enfield CG. 1998. Partitioning tracers for measuring residual NAPL: Field-scale test results. J Environ Eng 124:498–503.

    Article  CAS  Google Scholar 

  • Baran JR, Pope GA, Wade WH, Weerasooriya V. 1994. Phase behavior of water/perchloroethylene/anionic surfactant systems. Langmuir 10:1146–1150.

    Article  CAS  Google Scholar 

  • Betts PC, Aurelius M, Ashburn A, Curtis M. 1998. Design, construction and initial operation of the source recovery system. Proceedings, 1st International Conference on Remediation of Chlorinated and Recalcitrant Compounds. In Wickramanayake GB, Hinchee RE, Nonaqueous Phase Liquids: Remediation of Chlorinate and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, Vol C1-2, pp 187–192.

    Google Scholar 

  • Boyd SA, Mortland MM, Chiou CT. 1988. Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci Soc Am J 52:652–657.

    Article  CAS  Google Scholar 

  • Brooks MC, Annable MD, Rao PSC, Hatfield K, Jawitz JW, Wise WR, Wood AL, Enfield CG. 2004. Controlled release, blind test of DNAPL remediation by ethanol flushing. J Contam Hydrol 69:281–297.

    Article  CAS  Google Scholar 

  • Brown CL, Delshad M, Dwarakanath V, Jackson RE, Londergan JT, Meinardus HW, McKinney DC, Oolman T, Pope GA, Wade WH. 1999. Demonstration of surfactant flooding of an alluvial aquifer contaminated with dense nonaqueous phase liquids. In Brusseau ML, Sabatini DA, Gierke JS, Annable ME, eds, Field Testing of Innovative Subsurface Remediation Technologies. ACS Symposium Series. American Chemical Society, Washington, DC, USA, Chapter 6, pp 64–85.

    Google Scholar 

  • Brusseau ML, Wood AL, Rao PSC. 1991. Influence of organic solvents on the sorption kinetics of hydrophobic organic contaminants. Environ Sci Technol 25:903–910.

    Article  CAS  Google Scholar 

  • Cain RB, Johnson GR, McCray JE, Blanford WJ, Brusseau ML. 2000. Partitioning tracer tests for evaluating remediation performance. Ground Water 38:752–761.

    Article  CAS  Google Scholar 

  • Childs J, Acosta E, Annable MD, Brooks MC, Enfield CG, Harwell JH, Hasegawa M, Knox RC, Rao PSC, Sabatini DA, Shiau B, Szekeres E, Wood AL. 2006. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware. J Contam Hydrol 82:1–22.

    Article  CAS  Google Scholar 

  • Christ JA, Ramsburg CA, Loeffler FE, Pennell KD, Abriola LM. 2005. Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones - a review and assessment. Environ Health Perspect 113:465–477.

    Article  CAS  Google Scholar 

  • Cinar Y, Orr FM. 2005. Measurement of three-phase relative permeability with IFT variation. SPE Res Eval Eng 8:33–43.

    CAS  Google Scholar 

  • Claesson P. 1992. Poly(ethylene oxide) surface coatings: Relations between intermolecular forces, layer structure and protein repellency. Colloid Surface A 77:109–118.

    Article  Google Scholar 

  • Costanza J, Flethcher KE, Löffler FE, Pennell KD. 2009. Fate of tce in heated Fort Lewis soil. Environ Sci Technol 43:909–914.

    Article  CAS  Google Scholar 

  • Cowdery RC, Applegate JL, Warner KM. 2004. Co-oxidation method and co-oxidation reagent for decontamination of soil and groundwater. U.S. Patent 6869535.

    Google Scholar 

  • Delshad M, Pope GA, Yeh L, Holzmer FJ. 2000. Design of the surfactant flood at Camp Lejeune. In Wickramanayake GB, Gavaskar AR, Gupta N, eds, Treating Dense Nonaqueous-Phase Liquids (DNAPLs): Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 203–210.

    Google Scholar 

  • Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH. 1999. Surfactant selection for enhancing ex situ soil washing. Water Res 33:351–360.

    Article  CAS  Google Scholar 

  • Drummond CJ, Fong C. 2000. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456.

    Article  Google Scholar 

  • Dugan PJ, Siegrest RL, Crimi ML. 2009. Method and compositions for treatment of subsurface contaminants. U.S. Patent 7553105.

    Google Scholar 

  • Dugan PJ, Siegrist RL, Crimi ML. 2010. Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: A review. Remediat J 20:27–49.

    Article  Google Scholar 

  • Dwarakanath V, Kostarelos K, Pope GA, Shotts D, Wade WH. 1999. Anionic surfactant remediation of soil columns contaminated by nonaqueous phase liquids. J Contam Hydrol 38:465–488.

    Article  CAS  Google Scholar 

  • Edwards DA, Luthy RG, Liu Z. 1991. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127–133.

    Article  CAS  Google Scholar 

  • Falta RW. 1998. Using phase diagrams to redict the performance of cosolvent floods for NAPL remediation. Ground Water Monit Remediat 18:94–102.

    Article  CAS  Google Scholar 

  • Falta RW, Lee CM, Brame SE, Roeder E, Coates JT, Wright C, Wood AL, Enfield CG. 1999. Field test of high molecular weight alcohol flushing for subsurface nonaqueous phase liquid remediation. Water Resour Res 35:2095–2108.

    Article  CAS  Google Scholar 

  • Fountain JC, Starr RC, Middleton T, Beikirch M, Taylor C, Hodge D. 1996. A controlled field test of surfactant-enhanced aquifer remediation. Ground Water 34:910–916.

    Article  CAS  Google Scholar 

  • Freeze RA, McWhorter DB. 1997. A framework for assessing risk reduction due to DNAPL mass removal from low-permeability soils. Ground Water 35:111–123.

    Article  CAS  Google Scholar 

  • Friis AK, Albrechtsen HJ, Cox E, Bjerg PL. 2006. The need for bioaugmentation after thermal treatment of a tce-contaminated aquifer: Laboratory experiments. J Contam Hydrol 88:235–248.

    Article  CAS  Google Scholar 

  • Graciaa A, Lachaise J, Cucuphat C, Bourrell M, Salager JL. 1993. Interfacial segregation of an ethyl oleate/hexadecane oil mixture in microemulsion systems. Langmuir 9:1473–1478.

    Article  CAS  Google Scholar 

  • Gray MA, Metcalfe CD. 1997. Induction of testis-ova in japanese medaka (oryzias latipes) exposed to p-nonylphenol. Environ Toxicol Chem 16:1082–1086.

    CAS  Google Scholar 

  • Haggerty GM, Bowman RS. 1994. Sorption of chromate and other inorganic anions by organozeolite. Environ Sci Technol 28:452–458.

    Article  CAS  Google Scholar 

  • Hasegawa MH, Shau BJ, Sabatini DA, Knox RC, Harwell JH, Lago R, Yeh L. 2000. Surfactant-enhanced subsurface remediation of DNAPLs at the former Naval Air Station Alameda, California. In Wickramanayake GB, Gavaskar AR, Gupta N, eds, Treating Dense Nonaqueous-phase Liquids (DNAPLs): Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 219–226.

    Google Scholar 

  • Heath WO, Richardson RL, Goheen SC. 1994. Heating solid earthen material, measuring moisture and resistivity. U.S. Patent 5330291.

    Google Scholar 

  • Hiemenz PC, Rajagopalan R. 1997. Principles of Colloid and Surface Chemistry. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Hirasaki GJ, Miller CA, Szafranski R, Tanzil D, Lawson JB, Meinardus H, Jin M, Londergan JT, Jackson RE. 1997. Field demonstration of the surfactant/foam process for aquifer remediation. Proceedings, SPE Annual Technical Conference and Exhibition, October 5–8. San Antonio, TX, USA, 39292-MS.

    Google Scholar 

  • Hirasaki GJ, Jackson RE, Jin M, Lawson JB, Londergan J, Meinardus H, Miller CA, Pope GA, Szafranski R, Tanzil D. 2000. Field demonstration of the surfactant/foam process for remediation of a heterogeneous aquifer contaminated with DNAPL. In Fiorenza S, Oubre CL, Ward CH, eds, NAPL Removal: Surfactants, Foams, and Microemulsions. Lewis Publishers, Boca Raton, FL, USA, pp 1–166.

    Google Scholar 

  • Hoag GE, Collins J. 2011. Soil remediation method and composition. U.S. Patent 7976241.

    Google Scholar 

  • Holm LW, Csaszar AK. 1962. Oil recovery by solvents mutually soluble in oil and water. Soc Petrol Eng J 2:129–144.

    Google Scholar 

  • Holzmer FJ, Pope GA, Yeh L. 2000. Surfactant-enhanced aquifer remediation of PCE DNAPL in low-permeability sand. In Wickramanayake GB, Gavaskar AR, Gupta N, eds, Treating Dense Nonaqueous-Phase Liquids (DNAPLs): Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 211–218.

    Google Scholar 

  • Huh C. 1979. Interfacial-tensions and solubilizing ability of a microemulsion phase that coexists with oil and brine. J Colloid Interf Sci 71:408–426.

    Article  CAS  Google Scholar 

  • Imhoff PT, Gleyzer SN, McBride JF, Vancho LA, Okuda I, Miller CT. 1995. Cosolvent-enhanced remediation of residual dense nonaqueous phase liquids: Experimental investigation. Environ Sci Technol 29:1966–1976.

    Article  CAS  Google Scholar 

  • Jackson RE, Dwarakanath V. 1999. Chlorinated decreasing solvents: Physical-chemical properties affecting aquifer contamination and remediation. Ground Water Monit Remediat 19:102–110.

    Article  CAS  Google Scholar 

  • Jafvert CT, Hoof PLV, Chu W. 1994. Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Res 28:1009–1017.

    Article  CAS  Google Scholar 

  • Jain V, Demond AH. 2002. Conductivity reduction due to emulsification during surfactant-aquifer remediation. 2. Formation of emulsion in situ. Environ Sci Technol 36:5434–5440.

    Article  CAS  Google Scholar 

  • Jawitz JW, Annable MD, Rao PSC, Rhue RD. 1998. Field implementation of a winsor Type I surfactant/alcohol mixture for in situ solubilization of a complex LNAPL as a single phase microemulsion. Environ Sci Technol 32:523–530.

    Article  CAS  Google Scholar 

  • Jawitz JW, Sillan RK, Annable MD, Rao PSC, Warner K. 2000. In situ alcohol flushing of a DNAPL source zone at a dry cleaner site. Environ Sci Technol 34:3722–3729.

    Article  CAS  Google Scholar 

  • Jawitz JW, Annable MD, Rao PSC, Rhue RD. 2001. Evaluation of remediation performance and cost for field-scale single-phase microemulsion (SPME) flushing. J Environ Sci Health A 36:1437–1450.

    Article  CAS  Google Scholar 

  • Jayanti S, Britton LN, Dwarakanath V, Pope GA. 2002. Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones. Environ Sci Technol 36:5491–5497.

    Article  CAS  Google Scholar 

  • Jin M, Delshad M, Dwarakanath V, McKinney DC, Pope GA, Sepehrnoori K, Tilburg CE, Jackson RE. 1995. Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids. Water Resour Res 31:1201–1211.

    Article  CAS  Google Scholar 

  • Jin M, Hirasaki GJ, Jackson RE, Kostarelos K, Pope GA. 2007. Control of downward migration of dense nonaqueous phase liquid during surfactant flooding by design simulations. Water Resour Res 43:W01412.

    Google Scholar 

  • Johnson RL. 1992. The Dissolution of Dense Immiscible Solvents into Groundwater: Implications for Site Characterization and Remediation. Merkel Dekker, New York, NY, USA.

    Google Scholar 

  • Johnson RL, Pankow JE. 1992. Dissolution of dense chlorinated solvents into groundwater: Source functions for pools of solvent. Environ Sci Technol 26:896–901.

    Article  CAS  Google Scholar 

  • Kanan K, Yousef H, Kayali I. 2012. Nanostructured microemulsion phase behavior using aot or extended surfactant combined with a cationic hydrotrope. J Surf Eng Mater Adv Technol 2:53–60.

    CAS  Google Scholar 

  • Kibbey TC, Pennell KD, Hayes KF. 2001. Application of sieve-tray air strippers to the treatment of surfactant-containing wastewaters. AIChE J 47:1461–1470.

    Article  CAS  Google Scholar 

  • Kile DE, Chiou CT. 1989. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ Sci Technol 23:823–838.

    Article  Google Scholar 

  • Knox RC, Sabatini DA, Harwell JH, Brown RE, West CC, Blaha F, Griffin C. 1997. Surfactant remediation field demonstration using a vertical circulation well. Ground Water 35:948–953.

    Article  CAS  Google Scholar 

  • Kostarelos K, Pope GA, Rouse BA, Shook GM. 1998. A new concept: The use of neutrally-buoyant microemulsions for DNAPL remediation. J Contam Hydrol 34:383–397.

    Article  CAS  Google Scholar 

  • Kralova I, Sjoblom J. 2009. Surfactants used in food industry: A review. J Disper Sci Technol 30:1363–1383.

    Article  CAS  Google Scholar 

  • Krebs-Yuill B, Harwell JH, Sabatini DA, Knox RC. 1995. Economic considerations in surfactant-enhanced pump-and-treat remediation. In Sabatini DA, Know RC, Harwell JH, eds, Surfactant-Enhanced Subsurface Remediation. ACS Symposium Series 594. American Chemical Society, Washington, DC, USA, pp 265–278.

    Chapter  Google Scholar 

  • Kunieda H, Shinoda K. 1982. Phase behavior in systems of nonionic surfactant/water/oil around the hydrophile-lipophile-balance-temperature (HLB-temperature). J Disper Sci Technol 3:233–244.

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC. 2005. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161.

    Article  CAS  Google Scholar 

  • Lake LW. 1989. Enhanced Oil Recovery. Prentice Hall, Old Tappan, NJ, USA.

    Google Scholar 

  • Lange KR, ed. 1999. Surfactants: A Practical Handbook. Hanser Gardner Publications, Cincinnati, OH, USA.

    Google Scholar 

  • Levine Fricke L. 1998. Cosolvent flushing pilot test report: Former sages dry cleaner. Florida Department of Environmental Protection, Jacksonville, FL, USA.

    Google Scholar 

  • Lawrence MJ. 1994. Surfactant systems: Their use in drug delivery. Chem Soc Rev 23:417–424.

    Article  CAS  Google Scholar 

  • Li A, Yalkowsky SH. 1998. Predicting cosolvency. 1. Solubility ratio and solute log kow. Ind Eng Chem Res 37:4470–4475.

    Article  CAS  Google Scholar 

  • Li Z, Hanlie H. 2008. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation. Water Res 42:605–614.

    Article  CAS  Google Scholar 

  • Li Y, Abriola LM, Phelan TJ, Ramsburg CA, Pennell KD. 2007. Experimental and numerical validation of the total trapping number for prediction of DNAPL mobilization. Environ Sci Technol 41:8135–8141.

    Article  CAS  Google Scholar 

  • Liu MW, Roy D. 1995. Surfactant induced interactions and hydraulic conductivity changes in soil. Waste Manag 15:463–470.

    Article  CAS  Google Scholar 

  • Londergan JT, Meinardus HW, Mariner PE, Jackson RE, Brown CL, Dwarakanath V, Pope GA, Ginn JS, Taffinder S. 2001. DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation. Ground Water Monit Remediat 21:57–67.

    Article  Google Scholar 

  • Longino BL, Kueper BH. 1995. The use of upward gradients to arrest downward dense, nonaqueous phase liquid (DNAPL) migration in the presence of solubilizing surfactants. National Research Council of Canada, Ottawa, ON, Canada.

    Google Scholar 

  • Longino BL, Kueper BH. 1999. Nonwetting phase retention and mobilization in rock fractures. Water Resour Res 35:2085–2093.

    Article  Google Scholar 

  • Lunn SRD, Kueper BH. 1997. Removal of pooled dense, nonaqueous phase liquid from saturated porous media using upward gradient alcohol floods. Water Resour Res 33:2207–2219.

    Article  CAS  Google Scholar 

  • Lunn SRD, Kueper BH. 1999a. Manipulation of density and viscosity for the optimization of DNAPL recovery by alcohol flooding. J Contam Hydrol 38:427–445.

    Article  CAS  Google Scholar 

  • Lunn SRD, Kueper BH. 1999b. Risk reduction during chemical flooding: Preconditioning DNAPL density in situ prior to recovery by miscible displacement. Environ Sci Technol 33:1703–1708.

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WT, Ma KC, Lee SC. 2006. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Martel R, Gelinas PJ, Saumure L. 1998. Aquifer washing by micellar solutions: 3. Field test at the thouin sand pit (L’Assomption, Quebec, Canada). J Contam Hydrol 30:33–48.

    Article  CAS  Google Scholar 

  • McCray JE, Tick GR, Jawitz JW, Gierke JS, Brusseau ML. 2011. Remediation of NAPL source zones: Lessons learned from field studies at Hill and Dover AFB. Ground Water 49:727–744.

    Article  CAS  Google Scholar 

  • McDade JM, McGuire TM, Newell CJ. 2005. Analysis of DNAPL source depletion costs at 36 field sites. Remediat 15:9–18.

    Article  Google Scholar 

  • McGuire T, Hughes JB. 2003. Effects of surfactants on the dechlorination of chlorinated ethenes. Environ Toxicol Chem 22:2630–2638.

    Article  CAS  Google Scholar 

  • McGuire TM, McDade JM, Newell CJ. 2006. Performance of DNAPL source depletion technologies at 59 chlorinated solvent impacted sites. Ground Water Monit Remediat 26:73–84.

    Article  CAS  Google Scholar 

  • Meinardus HW, Dwarakanath V, Jackson RE, Jin M, Ginn JS, Stotler GC. 2000. Full-scale characterization of a DNAPL source zone with pitts. In Wickramanayake GB, Gavaskar AR, Gupta N, eds, Treating Dense Nonaqueous Phase Liquids (DNAPLs): Remediation of Chlorinated and Recaleitrant Compounds. Battelle Press, Columbus, OH, USA, Vol C2-2, pp 17–24.

    Google Scholar 

  • Meinardus HW, Dwarakanath V, Ewing J, Hirasaki GJ, Jackson RE, Jin M, Ginn JS, Londergan JT, Miller CA, Pope GA. 2002. Performance assessment of NAPL remediation in heterogeneous alluvium. J Contam Hydrol 54:173–193.

    Article  CAS  Google Scholar 

  • Miller R, Fainerman VB, Makievski AV, Krägel J, Grigorieva DO, Kazakov VN, Sinyachenko OV. 2000. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Adv Colloid Interf Sci 86:39–82.

    Article  CAS  Google Scholar 

  • Morris KR, Abramowitz R, Pinal R, Davis P, Yalkowsky SH. 1988. Solubility of aromatic pollutants in mixed solvents. Chemosphere 17:285–298.

    Article  CAS  Google Scholar 

  • Mravik SC, Sillan RK, Wood AL, Sewell GW. 2003. Field evaluation of the solvent extraction residual biotreatment technology. Environ Sci Technol 37:5040–5049.

    Article  CAS  Google Scholar 

  • Mulligan CN. 2005. Environmental applications for biosurfactants. Environ Pollut 133:183–198.

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF. 2001. Surfactant-enhanced remediation of contaminated soil: A review. Eng Geol 60:371–380.

    Article  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. 2008. Biosurfactants: Properties, commercial production and application. Curr Sci 94:736–747.

    CAS  Google Scholar 

  • Nalecz-Jawecki GA, Grabińska-Sota EB, Narkiewicz PA. 2003. The toxicity of cationic surfactants in four bioassays. Ecotoxicol Environ Saf 54:87–91.

    Article  CAS  Google Scholar 

  • Nelson R. 1989. Chemically enhanced oil recovery: The state of the art. Chem Eng Prog 85:50–57.

    CAS  Google Scholar 

  • Nimrod AC, Benson WH. 1996. Estrogenic responses to xenobiotics in channel catfish (Ictalurus punctatus). Mar Environ Res 42:155–160.

    Article  CAS  Google Scholar 

  • Oolman T, Godard ST, Jin M, Pope GA, Kirchner K. 1995. DNAPL flow behavior in a contaminated aquifer: Evaluation of field data. Ground Water Monit Remediat 15:125–137.

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza G, Piotrowska-Seget Z, Cameotra S. 2011. Environmental applications of biosurfactants: Recent advances. Int J Mol Sci 12:633–654.

    Article  CAS  Google Scholar 

  • Pennell KD, Abriola LM. 1997. Surfactant enhanced aquifer remediation: Fundamental processes and practical application. In Sikdar SK, Irvine RL, eds, Bioremediation: Principles and Practice. Technomic Publication, Lancaster, PA, USA, pp 693–750.

    Google Scholar 

  • Pennell KD, Abriola LM Jr, Weber WJ. 1993. Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environ Sci Technol 27:2332–2340.

    Article  CAS  Google Scholar 

  • Pennell KD, Pope GA, Abriola LM. 1996. Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ Sci Technol 30:1328–1335.

    Article  CAS  Google Scholar 

  • Pennell KD, Adinolfi AM, Abriola LM, Diallo MS. 1997. Solubilization of dodecane, tetrachloroethylene, and 1,2-dichlorobenzene in micellar solutions of ethoxylated nonionic surfactants. Environ Sci Technol 31:1382–1389.

    Article  CAS  Google Scholar 

  • Pinal R, Rao PSC, Lee LS, Cline PV, Yalkowsky SH. 1990. Cosolvency of partially miscible organic solvents on the solubility of hydrophobic organic chemicals. Environ Sci Technol 4:639–647.

    Article  Google Scholar 

  • Pope GA. 1980. The application of fractional flow theory to enhanced oil recovery. Soc Petrol Eng J 20:191–205.

    CAS  Google Scholar 

  • Pope GA, Wade WH. 1995. Lessons from enhanced oil recovery research for surfactant-enhanced aquifer remediation. In Surfactant-Enhanced Subsurface Remediation. ACS Symposium Series, Vol 594. American Chemical Society, Washington, DC, USA, pp 142–160.

    Google Scholar 

  • Radian Corporation. 1992. Final Remedial Investigation for Operable Unit 2, Sites WP07 and SS21. Hill Air Force Base, Utah, USA.

    Google Scholar 

  • Ramakrishnan V, Ogram AV, Lindner AS. 2005. Impacts of co-solvent flushing on microbial populations capable of degrading trichloroethylene. Environ Health Perspect 113:55–61.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD. 2001. Experimental and economic assessment of two surfactant formulations for source zone remediation at a former dry cleaning facility. Ground Water Monit Remediat 21:68–82.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD. 2002. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: Density conversion using a partitioning alcohol. Environ Sci Technol 36:2082–2087.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Kibbey TCG, Hayes KF. 2003. Use of a surfactant stabilized emulsion to deliver n-butanol for density modified displacement of trichloroethene-NAPL. Environ Sci Technol 37:4246–4253.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Abriola LM, Pennell KD, Loffler FE, Gamache M, Amos BK, Petrovskis EA. 2004a. Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman Road site. Environ Sci Technol 38:5902–5914.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Kibbey TCG, Hayes KF. 2004b. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones. J Contam Hydrol 74:105–131.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Abriola LM, Daniels G, Drummond CD, Gamache M, Hsu H-l, Petrovskis EA, Rathfelder KM, Ryder JL, Yavaraski TP. 2005. Pilot-scale demonstration of surfactant-enhanced pce solubilization at the bachman road site. 2. System operation and evaluation. Environ Sci Technol 39:1791–1801.

    Article  CAS  Google Scholar 

  • Rao PSC, Lee LS, Pinal R. 1991. Solubility, Sorption and Transport of Hydrophobic Organic Chemicals in Complex Mixtures. Environmental Research Brief. U.S. Environmental Protection Agency, Washington, DC, USA.

    Google Scholar 

  • Rao PSC, Annable MD, Sillan RK, Dai D, Hatfield K, Graham WD, Lynn Wood A, Enfield CG. 1997. Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation. Water Resour Res 33:2673–2686.

    Article  Google Scholar 

  • Rao P-H, He M, Yang X, Zhang Y-C, Sun S-Q, Wang J-S. 2006. Effect of an anionic surfactant on hydraulic conductivities of sodium- and calcium-saturated soils. Pedosphere 16:673–680.

    Article  CAS  Google Scholar 

  • Renshaw CE, Zynda GD, Fountain JC. 1997. Permeability reductions induced by sorption of surfactant. Water Resour Res 33:371–378.

    Article  CAS  Google Scholar 

  • Roeder E, Falta RW, Lee CM, Coates JT. 2001. DNAPL to LNAPL transitions during horizontal cosolvent flooding. Ground Water Monit Remediat 21:77–88.

    Article  CAS  Google Scholar 

  • Rong MZ, Zhang MQ, Ruan WH. 2006. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review. Mater Sci Technol 22:787–796.

    Article  CAS  Google Scholar 

  • Roote DS. 1998. In Situ Flushing. Technology Status Report TS-98-01. Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA.

    Google Scholar 

  • Rosen MJ. 1989. Surfactants and Interfacial Phenomena, 2nd ed. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Roshanfekr M, Johns RT. 2011. Prediction of optimum salinity and solubilization ratio for microemulsion phase behavior with live crude at reservoir pressure. Fluid Phase Equilibr 304:52–60.

    Article  CAS  Google Scholar 

  • Sabatini DA, Knox RC, Harwell JH, Wu B. 2000. Integrated design of surfactant enhanced DNAPL remediation: Efficient supersolubilization and gradient systems. J Contam Hydrol 45:99–121.

    Article  CAS  Google Scholar 

  • Shiau B. 2008. In-situ surfactant and chemical oxidant flushing for complete removal of contaminants and methods of using same. U.S. Patent 7364386.

    Google Scholar 

  • Shiau BJ, Sabatini DA, Harwell JH. 1994. Solubilization and microemulsification of chlorinated solvents using direct food additive (edible) surfactants. Ground Water 32:561–569.

    Article  CAS  Google Scholar 

  • Shiau BJ, Sabatini DA, Harwell JH. 1995. Properties of food grade (edible) surfactants affecting subsurface remediation of chlorinated solvents. Environ Sci Technol 29:2929–2935.

    Article  CAS  Google Scholar 

  • Shinoda K, Saito H. 1968. The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionicsurfactant. J Colloid Interf Sci 26:70–74.

    Article  CAS  Google Scholar 

  • Shook GM, Pope GA, Kostarelos K. 1998. Prediction and minimization of vertical migration of DNAPLs using surfactant enhanced aquifer remediation at neutral buoyancy. J Contam Hydrol 34:363–382.

    Article  CAS  Google Scholar 

  • Sillan RK. 1999. Field-scale evaluation of in situ co-solvent flushing for enhanced aquifer remediation. University of Florida, Gainesville, FL, USA.

    Google Scholar 

  • Smith JA, Sahoo D, McLellan HM, Imbrigiotta TE. 1997. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton x-100. Environ Sci Technol 31:3565–3572.

    Article  CAS  Google Scholar 

  • Soga K, Page JWE, Illangasekare TH. 2004. A review of NAPL source zone remediation efficiency and the mass flux approach. J Hazard Mater 110:13–27.

    Article  CAS  Google Scholar 

  • Srinivasan KR, Fogler HS. 1990. Use of inorgano-organo-clays in the removal of priority pollutants from industrial wastewaters: Adsorption of benzo(a)pyrene and chlorophenols from aqueous solutions. Clay Clay Miner 38:287–293.

    Article  CAS  Google Scholar 

  • Stauffer CE. 2005. Emulsifiers for the food industry. Volume 4. In Shahidi F, ed, Bailey’s Industrial Oil and Fat Products: Products and Applications. John Wiley and Sons Inc., New York, NY, USA, pp. 229–267.

    Google Scholar 

  • Strbak L. 2000. In situ flushing with surfactants and cosolvents. U.S. Environmental Protection Agency, Washington, DC, USA. http://www.clu-in.org. Accessed December 4, 2012.

  • Stroo HF, Unger M, Ward CH, Kavanaugh MC, Vogel TM, Leeson A, Marqusee JA, Smith BP. 2003. Remediating chlorinated solvent source zones. Environ Sci Technol 37:224A–230A.

    Article  CAS  Google Scholar 

  • Stroo HF, Leeson A, Marqusee JA, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennell KD, Lebrón CA, Unger M. 2012. Chlorinated ethene source remediation: Lessons learned. Environ Sci Technol 46:6438–6447.

    Article  CAS  Google Scholar 

  • Suchomel EJ, Pennell KD. 2006. Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones. Environ Sci Technol 40:6110–6116.

    Article  CAS  Google Scholar 

  • Suchomel EJ, Ramsburg CA, Pennell KD. 2007. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants. J Contam Hydrol 93:195–214.

    Article  CAS  Google Scholar 

  • Szafranski R, Lawson J, Hirasaki G, Miller C, Akiya N, King S, Jackson R, Meinardus H, Londergan J. 1998. Surfactant/foam process for improved efficiency of aquifer remediation. In Rehage H, Peschel G, eds, Structure, Dynamics and Properties of Disperse Colloidal Systems. Vol. 111. Springer Berlin, Germany, pp 162–167.

    Chapter  Google Scholar 

  • Taber JJ. 1981. Research on enhanced oil recovery: Past, present and future. In Shah DO, ed, Surface Phenomenon in Enhanced Oil Recovery. Plenum Press, New York, NY, USA, pp 13–52.

    Chapter  Google Scholar 

  • Taylor TP, Pennell KD, Abriola LM, Dane JH. 2001. Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses, 1. Experimental studies. J Contam Hydrol 48:325–350.

    Article  CAS  Google Scholar 

  • Tochilin VP. 2001. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172.

    Article  Google Scholar 

  • Trogus FJ, Sophany T, Schechter RS, Wade WH. 1977. Static and dynamic adsorption of anionic and nonionic surfactants. SOC Petrol Eng J 17:337–344.

    CAS  Google Scholar 

  • Tsai TT, Kao CM, Yeh TY, Liang SH, Chien HY. 2009. Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater. J Hazard Mater 161:111–119.

    Article  CAS  Google Scholar 

  • URS Greiner Woodward Clyde and Duke Engineering and Services. 1999. Final report for the dense nonaqueous phase liquid (DNAPL) source delineation project, OU2. U.S. Air Force, Hill Air Force Base, Utah, USA.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 2003. The DNAPL remediation challenge: Is there a case for source depletion? EPA/600/R-03/143. Office of Research and Development, Washington, DC, USA.

    Google Scholar 

  • USEPA. 2012. DfE Alternatives Assessment for Nonylphenol Ethoxylates. http://www.epa.gov/dfe/pubs/projects/npe/ Accessed September 16, 2013.

  • Valsaraj K, Gupta A, Thibodeaux L, Harrison D. 1988. Partitioning of chloromethanes between aqueous and surfactant micellar phases. Water Res 22:1173–1183.

    Article  CAS  Google Scholar 

  • van Genuchten MT. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898.

    Article  Google Scholar 

  • Wagner J, Chen H, Brownawell BJ, Westall JC. 1994. Use of cationic surfactants to modify soil surfaces to promote sorption and retard migration of hydrophobic organic compounds. Environ Sci Technol 28:231–237.

    Article  CAS  Google Scholar 

  • Yalkowsky SH, Roseman TJ. 1981. Solubilization of drugs by cosolvents. In Yalkowsky SH, ed, Techniques of Solubilization of Drugs. Marcel Dekker, New York, NY, USA, pp 91–134.

    Google Scholar 

  • Yeh DH, Pennell KD, Pavlostathis SG. 1999. Effect of tween surfactants on methanogenesis and microbial reductive dechlorination of hexachlorobenzene. Environ Toxicol Chem 18:1408–1416.

    Article  CAS  Google Scholar 

  • Zhai X, Hua I, Rao PSC, Lee LS. 2006. Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate. J Contam Hydrol 82:61–74.

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM. 1992. Enhanced octadecane dispersion and biodegradation by a pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282.

    CAS  Google Scholar 

  • Zhou M, Rhue RD. 2000. Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization. Environ Sci Technol 34:1985–1990.

    Article  CAS  Google Scholar 

  • Zimmerman JB, Kibbet TCG, Cowell MA, Hayes KF. 1999. Partitioning of ethoxylated nonionic surfactants into nonaqueous-phase organic liquids: Influence on solubilization behavior. Environ Sci Technol 33:169–176.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pennell, K.D., Cápiro, N.L., Walker, D.I. (2014). Surfactant And Cosolvent Flushing. In: Kueper, B., Stroo, H., Vogel, C., Ward, C. (eds) Chlorinated Solvent Source Zone Remediation. SERDP ESTCP Environmental Remediation Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6922-3_11

Download citation

Publish with us

Policies and ethics