Skip to main content

IN SITU Chemical Reduction For Source Remediation

  • Chapter
  • First Online:
Chlorinated Solvent Source Zone Remediation

Abstract

In situ chemical reduction (ISCR) is a general term for a suite of in situ groundwater remediation technologies that rely primarily on chemical reduction of contaminants. ISCR has been used for over 15 years for plume treatment, but its use for source treatment is more recent. This chapter provides the first integrated assessment of the entire suite of ISCR technologies, and describes the technical basis, engineering aspects, past experiences and future prospects for using ISCR to treat chlorinated solvent source zones. In situ chemical reduction of contaminants can occur through natural intrinsic biogeochemical processes, as a result of stimulating in situ microbial activity to form reducing minerals, or after direct injection of chemical reductants. The chapter includes case studies of several ISCR technologies and summarizes the lessons learned to date from research and field experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Adriaens P, Gruden C, McCormick ML. 2004. Biogeochemistry of halogenated hydrocarbons. Treatise Geochem 9:511–539.

    CAS  Google Scholar 

  • Amonette JE. 2002. Iron redox chemistry of clays and oxides: Environmental applications. In Fitch A, ed, Electrochemistry of Clays. Clay Minerals Society, Aurora, CO, USA. CMS Work Lect 10:89–147.

    CAS  Google Scholar 

  • Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA. 2000. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ Sci Technol 34:4606–4613.

    CAS  Google Scholar 

  • Arnold WA, Roberts AL. 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34:1794–1805.

    CAS  Google Scholar 

  • Arnold WA, Ball WP, Roberts AL. 1999. Polychlorinated ethane reaction with zero-valent zinc: Pathways and rate control. J Contam Hydrol 40:183–200.

    CAS  Google Scholar 

  • ASTM (American Society for Testing and Materials). 2007. Standard Test Method for Estimating the Permanganate Natural Oxidant Demand of Soil and Aquifer Solids. D7262-07. ASTM International, West Conshohocken, PA, USA. Vol 04.09.

    Google Scholar 

  • Ayala-Luis KB, Cooper NGA, Koch CB, Hansen HCB. 2012. Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercalated with dodecanoate anions. Environ Sci Technol 46:3390–3397.

    CAS  Google Scholar 

  • Bastiaens L, Dries J, Vos J, Simons Q, De Smet M, Diels L. 2005. Comparison of different multibarrier concepts designed for treatment of groundwater containing mixed pollutants. IAHS Publ 298:45–51.

    CAS  Google Scholar 

  • Becvar E, Evans P, Lebron C, Stroo H, Wilson JT, Wymore R. 2008. Workshop on In Situ Biogeochemical Transformation of Chlorinated Solvents. AFD-080429–058. Brooks City Base, TX, USA. 65 p.

    Google Scholar 

  • Bennett P, He F, Zhao D, Aiken B, Feldman L. 2010. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. J Contam Hydrol 116:35–46.

    CAS  Google Scholar 

  • Berge ND, Ramsburg CA. 2009. Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol 43:5060–5066.

    CAS  Google Scholar 

  • Blowes DW, Mayer KU. 1999. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water, Volume 3-Multicomponent Reactive Transport Modeling. EPA/600/R-99/095c. U.S. Environmental Protection Agency, Ada, OK, USA. 39 p.

    Google Scholar 

  • Blowes DW, Gillham RW, Ptacek CJ, Puls RW, Bennett TA, O’Hannesin SF, Hanton-Fong CJ, Bain JG. 1999a. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water, Volume 1-Design and Installation. EPA/600/R-99/095a. U.S. Environmental Protection Agency, Ada, OK, USA. 111 p.

    Google Scholar 

  • Blowes DW, Puls RW, Gillham RW, Ptacek CJ, Bennett TA, Bain JG, Hanton-Fong CJ, Paul CJ. 1999b. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water, Volume 2-Performance Monitoring. EPA/600/R-99/095b. U.S. Environmental Protection Agency, Ada, OK, USA. 207 p.

    Google Scholar 

  • Borda MJ, Venkatakrishnan R, Gheorghiu F. 2009. Status of nZVI technology: Lessons learned from North American and international implementations. In Geiger Cherie L, Carvalho-Knighton KM, eds, Environmental Applications of Nanoscale and Microscale Reactive Metal Particles. Symposium Series 1027. American Chemical Society, Washington, DC, USA, pp 219–232.

    Google Scholar 

  • Brown RA. 2008. Developments in in situ chemical reduction (ISCR) technology. Proceedings, 6th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 19–22. Battelle Press, Columbus, OH, USA, Paper C-066.

    Google Scholar 

  • Brown RA. 2010. Chemical oxidation and reduction for chlorinated solvent remediation. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 481–535.

    Google Scholar 

  • Brown RA, Robinson D. 2004. Response to naturally occurring organic material: Permanganate versus persulfate. Proceedings of the 4th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27. Battelle Press, Columbus, OH, USA. 2A.06/1-2A.06/8.

    Google Scholar 

  • Brown RA, Lewis RL, Fiacco RJ, Jr, Leahy MC. 2006. The technical basis for in situ chemical reduction (ISCR). Proceedings, 5th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25. Battelle Press, Columbus, OH, USA. d 04 ppr/1-d 04 ppr/8.

    Google Scholar 

  • Brown RA, Wilson JT, Ferrey M. 2007. Monitored natural attenuation forum: The case for abiotic MNA. Remediat J 17:127–137.

    Google Scholar 

  • Butler EC, Hayes KF. 1999. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33:2021–2027.

    CAS  Google Scholar 

  • Butler EC, Hayes KF. 2001. Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environ Sci Technol 35:3884–3891.

    CAS  Google Scholar 

  • Butler EC, Dong Y, Krumholz LR, Liang X, Shao H, Tan Y. 2011. Rate controlling processes in the transformation of tetrachloroethylene and carbon tetrachloride under iron reducing and sulfate reducing conditions. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1071:519–538.

    Google Scholar 

  • Bylaska EJ, Salter-Blanc AJ, Tratnyek PG. 2011. One-electron reduction potentials from chemical structure theory calculations. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA. ACS Symp Ser 1071:37–64.

    CAS  Google Scholar 

  • Cantrell KJ, Kaplan DI, Gilmore TJ. 1997. Injection of colloidal Fe0 particles in sand with shear-thinning fluids. J Environ Eng 123:786–791.

    CAS  Google Scholar 

  • Cervini-Silva J, Larson RA, Wu J, Stucki JW. 2002. Dechlorination of pentachloroethane by commercial Fe and ferruginous smectite. Chemosphere 47:971–976.

    CAS  Google Scholar 

  • Choe JK, Shapley JR, Strathmann TJ, Werth CJ. 2010. Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction. Environ Sci Technol 44:4716–4721.

    CAS  Google Scholar 

  • Clayton WS. 1998. A field and laboratory investigation of air fingering during air sparging. Ground Water Monit Remediat 18:134–145.

    CAS  Google Scholar 

  • Comba S, Molfetta A, Sethi R. 2011. A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut 215:595–607.

    CAS  Google Scholar 

  • Crane RA, Scott TB. 2012. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125.

    Google Scholar 

  • Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ. 2011. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682.

    CAS  Google Scholar 

  • Cwiertny DM, Arnold WA, Kohn T, Rodenburg LA, Roberts AL. 2010. Reactivity of alkyl polyhalides toward granular iron: Development of QSARs and reactivity cross correlations for reductive dehalogenation. Environ Sci Technol 44:7928–7936.

    CAS  Google Scholar 

  • Darlington R, Lehmicke L, Andrachek RG, Freedman DL. 2008. Biotic and abiotic anaerobic transformations of trichloroethene and cis-1,2-dichloroethene in fractured sandstone. Environ Sci Technol 42:4323–4330.

    CAS  Google Scholar 

  • Davie MG, Cheng H, Hopkins GD, Lebron CA, Reinhard M. 2008. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater. Environ Sci Technol 42:8908–8915.

    CAS  Google Scholar 

  • Dolfing J. 2003. Thermodynamic considerations for dehalogenation. In Häggblom MM, Bossert ID, Bossert ID, eds, Dehalogenation: Microbial Processes and Environmental Applications. Kluwer, Boston, MA, USA, pp 89–114.

    Google Scholar 

  • Dolfing J, van Eekert M, Seech A, Vogan J, Mueller J. 2008. In situ chemical reduction (ISCR) technologies: Significance of low Eh reactions. Soil Sediment Contam 17:63–74.

    CAS  Google Scholar 

  • Elsner M, Hofstetter TB. 2011. Current perspectives on the mechanisms of chlorohydrocarbon degradation in subsurface environments: Insight from kinetics, product formation, probe molecules and isotope fractionation. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1071:407–439.

    Google Scholar 

  • Elsner M, Schwarzenbach RP, Haderlein SB. 2004. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ Sci Technol 38:799–807.

    CAS  Google Scholar 

  • Elsner M, Couloume GL, Mancini S, Burns L, Lollar BS. 2010. Carbon isotope analysis to evaluate nanoscale Fe(0) treatment at a chlorohydrocarbon contaminated site. Ground Water Monit Remediat 30:79–95.

    CAS  Google Scholar 

  • Erbs M, Hansen HCB, Olsen CE. 1999. Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust). Environ Sci Technol 33:307–311.

    CAS  Google Scholar 

  • ESTCP (Environmental Security Technology Certification Program). 1999. Permeable Reactive Wall Remediation of Chlorinated Hydrocarbons in Groundwater. Cost Performance Report for CU-9604. Alexandria, VA, USA. 52 p.

    Google Scholar 

  • Evans PJ, Fricke RA, Hopfensperger K, Titus T. 2011. In situ destruction of perchlorate and nitrate using gaseous electron donor injection technology. Ground Water Monit Remediat 31:103–112.

    CAS  Google Scholar 

  • Fagerlund F, Illangasekare TH, Phenrat T, Kim HJ, Lowry GV. 2012. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. J Contam Hydrol 131:9–28.

    CAS  Google Scholar 

  • Fang Y, Hozalski RM, Clapp LW, Novak PJ, Semmens MJ. 2002. Passive dissolution of hydrogen gas into groundwater using hollow-fiber membranes. Water Res 36:3533–3542.

    CAS  Google Scholar 

  • Ferrey ML, Wilkin RT, Ford RG, Wilson JT. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.

    CAS  Google Scholar 

  • Fiorenza S, Oubre CL, Ward CH. 2000. Sequenced Reactive Barriers for Groundwater Remediation. CRC Press, Boca Raton, FL, USA. 730 p.

    Google Scholar 

  • Fjordboge AS, Lange IV, Bjerg PL, Binning PJ, Riis C, Kjeldsen P. 2012a. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction. J Contam Hydrol 140–141:67–79.

    Google Scholar 

  • Fjordboge AS, Riis C, Christensen AG, Kjeldsen P. 2012b. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. Site description and contaminant source mass reduction. J Contam Hydrol 140–141:56–66.

    Google Scholar 

  • Ford RG. 2002. Solid phase redox characterization. In Wilkin RT, Ludwig RD, Ford RG, eds, Workshop on Monitoring Oxidation-Reduction Processes for Ground-Water Restoration. Workshop Summary, Dallas, TX, USA. April 25–27. EPA/600/R-02/002. U.S. Environmental Protection Agency, Cincinnati, OH, USA, pp 105–113.

    Google Scholar 

  • Fruchter J. 2002. In-situ treatment of chromium-contaminated groundwater. Environ Sci Technol 36:464A–472A.

    CAS  Google Scholar 

  • Fruchter JS, Cole CR, Williams MD, Vermeul VR, Amonette JE, Szecsody JE, Istok JD, Humphrey MD. 2000. Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation. Ground Water Monit Remediat 20:66–77.

    CAS  Google Scholar 

  • Furukawa Y, Kim J-W, Watkins J, Wilkin RT. 2002. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol 36:5469–5475.

    CAS  Google Scholar 

  • Gavaskar A. 1999. Design and construction techniques for permeable reactive barriers. J Hazard Mater 68:41–71.

    CAS  Google Scholar 

  • Gavaskar A, Sass B, Gupta N, Hicks J, Yoon S, Fox T, Sminchak JR. 1998. Performance Evaluation of a Pilot-Scale Permeable Reactive Barrier at Former Naval Air Station Moffett Field, Mountain View, California. Final Report for ESTCP CU-9604. Battelle Press, Columbus, OH, USA. 173 p.

    Google Scholar 

  • Geiger CL, Carvalho-Knighton KM, eds. 2009. Environmental applications of nanoscale and microscale reactive metal particles. ACS Symp Ser 1027. 306 p.

    Google Scholar 

  • Gillham RW, Vogan J, Gui L, Duchene M, Son J. 2010. Iron barrier walls for chlorinated solvent remediation. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 537–571.

    Google Scholar 

  • Golas PL, Lowry GV, Tilton RD, Matyjaszewski K. 2010. Designing polymer stabilizers by ATRP for iron nanoparticles used in groundwater remediation. ACS National Meeting, March 21–25, San Francisco, CA, USA. American Chemical Society, Washington, DC, USA. COLL-304.

    Google Scholar 

  • Gorski CA, Nurmi JT, Tratnyek PG, Hofstetter TB, Scherer MM. 2010. Redox behavior of magnetite: Implications for contaminant reduction. Environ Sci Technol 44:55–60.

    CAS  Google Scholar 

  • Graham MC, Farmer JG, Anderson P, Paterson E, Hillier S, Lumsdon DG, Bewley RJF. 2006. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Sci Total Environ 364:32–44.

    CAS  Google Scholar 

  • Grittini C, Malcomson M, Fernando Q, Korte N. 1995. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ Sci Technol 29:2898–2900.

    CAS  Google Scholar 

  • Gui L, Gillham RW. 2003. Preparation and regeneration of nickel-iron for reduction of organic contaminants. In Henry SM, Warner SD, eds, Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup. American Chemical Society, Washington, DC, USA. ACS Symp Ser 837:206–216.

    CAS  Google Scholar 

  • Haas JR, Shock EL. 1999. Halocarbons in the environment: Estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings. Geochim Cosmochim Acta 63:3429-3441.

    CAS  Google Scholar 

  • Haderlein SB, Schwarzenbach RP. 1995. Environmental processes influencing the rate of abiotic reduction of nitroaromatic compounds in the subsurface. In Spain JC, ed, Biodegradation of Nitroaromatic Compounds. Plenum, New York, NY, USA, pp 199–225.

    Google Scholar 

  • Haderlein SB, Hofstetter TB, Schwarzenbach RP. 2000. Subsurface chemistry of nitroaromatic compounds. In Spain JC, Hughes JB, Knackmus HJ, eds, Biodegradation of Nitroaromatic Compounds and Explosives. Lewis, Boca Raton, FL, USA, pp 311–356.

    Google Scholar 

  • Haselow JS, Siegrist RL, Crimi M, Jarosch T. 2003. Estimating the total oxidant demand for in situ chemical oxidation design. Remediat J 13:5–16.

    Google Scholar 

  • He F, Zhao D. 2007. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221.

    CAS  Google Scholar 

  • He F, Zhao D, Paul C. 2010. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370.

    CAS  Google Scholar 

  • He Y, Su C, Wilson J, Wilkin R, Adair C, Lee TR, Bradley P, Ferrey M. 2009. Identification and characterization methods for reactive minerals responsible for natural attenuation of chlorinated organic compounds in ground water. EPA/600/R-09/115. U.S. Environmental Protection Agency, Ada, OK, USA. 150 p.

    Google Scholar 

  • Heck KN, Nutt MO, Alvarez P, Wong MS. 2009. Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. J Catal 267:97–104.

    CAS  Google Scholar 

  • Heiderscheidt JL, Illangasekare TH, Borden RC, Thomson NR. 2011. Principles of ISCO related subsurface transport and modeling. In Siegrist RL, Crimi M, Simpkin TJ, eds, In Situ Chemical Oxidation for Groundwater Remediation. Springer, New York, NY, USA, pp 233–284.

    Google Scholar 

  • Henderson AD, Demond AH. 2007. Long-term performance of zero-valent iron permeable reactive barriers. A critical review. Environ Eng Sci 24:401–423.

    CAS  Google Scholar 

  • Henderson TH, Mayer KU, Parker BL, Al TA. 2009. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J Contam Hydrol 106:195–211.

    CAS  Google Scholar 

  • Henn KW, Waddill DW. 2006. Utilization of nanoscale zero-valent iron for source remediation – A case study. Remediat J 16:57–77.

    Google Scholar 

  • Hirasaki GJ, Miller CA, Szafranski R, Tanzil D, Lawson JB, Meinardus HW, Jin M, Londergan J, Jackson RE, Pope GA, Wade WH. 1997. Field demonstration of the surfactant/foam process for aquifer remediation. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, San Antonio, TX, USA, October 5–8, Paper EPE 39292:1–16.

    Google Scholar 

  • Ingram JC, Cortez MM, Bates DL, McCurry MO. 2000. Reductive dechlorination of trichloroethylene and carbon tetrachloride at iron oxides and basalt minerals. In Eller PG, Heineman W, eds, Nuclear Site Remediation. American Chemical Society, Washington, DC, USA, ACS Symp Ser 778:267–281.

    Google Scholar 

  • Jeen SW, Gillham RW, Przepiora A. 2011. Predictions of long-term performance of granular iron permeable reactive barriers: Field-scale evaluation. J Contam Hydrol 123:50–64.

    CAS  Google Scholar 

  • Jeong HY, Anantharaman K, Han Y-S, Hayes KF. 2011. Abiotic reductive dechlorination of cis-dichloroethylene by Fe species formed during iron- or sulfate-reduction. Environ Sci Technol 45:5186–5194.

    CAS  Google Scholar 

  • Johnson RL, Johnson PC. 2012. In situ sparging for delivery of gases in the subsurface. In Kitanidis PK, McCarty PL, eds, Delivery and Mixing in the Subsurface. Springer, New York, NY, USA, pp 193–216.

    Google Scholar 

  • Johnson RL, Johnson PC, McWhorter DB, Hinchee RE, Goodman I. 1993. An overview of in situ air sparging. Ground Water Monit Remediat 13:127–135.

    CAS  Google Scholar 

  • Johnson RL, Nurmi JT, O’Brien G, Fan D, Shi Z, Salter-Blanc Alexandra J, Tratnyek, PG, Lowry, GV. 2013. Field scale transport and transformation of carboxymethylcellulose stabilized nano zero valent iron. Env Sci Tech 47:1573–1580.

    CAS  Google Scholar 

  • Johnson TL, Tratnyek PG. 1994. A column study of carbon tetrachloride dehalogenation by iron metal. 33rd Hanford Symposium on Health and the Environment. Battelle Pacific Northwest Laboratories, Richland, WA, USA, Vol 2, pp 931–947.

    Google Scholar 

  • Kamolpornwijit W, Liang L, Moline GR, Hart T, West OR. 2004. Identification and quantification of mineral precipitation in Fe0 filings from a column study. Environ Sci Technol 38:5757–5765.

    CAS  Google Scholar 

  • Kaplan DI, Cantrell KJ, Wietsma TW. 1994. Formation of a barrier to groundwater contaminants by the injection of zero-valent iron colloids: suspension properties. 33rd Hanford Symposium on Health and the Environment, Vol 2. Battelle Pacific Northwest Laboratories, Richland, WA, USA, pp 821–837.

    Google Scholar 

  • Kaplan DI, Cantrell KJ, Wietsma TW, Potter MA. 1996. Retention of zero-valent iron colloids by sand columns: Application to chemical barrier formation. J Environ Qual 25:1086–1094.

    CAS  Google Scholar 

  • Kennedy LG, Everett JW, Becvar E, DeFeo D. 2006a. Field-scale demonstration of induced biogeochemical reductive dechlorination at Dover Air Force Base, Dover, Delaware. J Contam Hydrol 88:119–136.

    CAS  Google Scholar 

  • Kennedy LG, Everett JW, Gonzales J. 2006b. Assessment of biogeochemical natural attenuation and treatment of chlorinated solvents, Altus Air Force Base, Altus, Oklahoma. J Contam Hydrol 83:221–236.

    CAS  Google Scholar 

  • Kenneke JF, McCutcheon SC. 2003. Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer. Environ Sci Technol 37:2829–2835.

    CAS  Google Scholar 

  • Kenneke JF, Weber EJ. 2003. Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis. Environ Sci Technol 37:713–720.

    CAS  Google Scholar 

  • Khandelwal A, Rabideau AJ, Shen P. 1998. Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials. Environ Sci Technol 32:1333–1339.

    CAS  Google Scholar 

  • Kim H-J, Phenrat T, Tilton RD, Lowry GV. 2009. Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830.

    CAS  Google Scholar 

  • Kim H-J, Phenrat T, Tilton RD, Lowry GV. 2012. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interf Sci 370:1–10.

    CAS  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG, Jr, Lowry GV, Tilton RD. 2010. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480.

    CAS  Google Scholar 

  • Kriegman-King MR, Reinhard M. 1994. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ Sci Technol 28:692–700.

    CAS  Google Scholar 

  • Krug T, O'Hara S, Watling M, Quinn J. 2010. Emulsified zero-valent nano-scale iron treatment of chlorinated solvent DNAPL source areas. Final Report. ESTCP ER-0431. Environmental Security Technology Certification Program, Alexandria, VA, USA, 763 p.

    Google Scholar 

  • La Mori P, Kirkland E, Faircloth H, Bogert R, Kershner M. 2010. Combined thermal and zero-valent iron in situ soil mixing remediation technology. Remediat J 20:9–25.

    Google Scholar 

  • Landis RL, Gillham RW, Reardon EJ, Fagan R, Focht RM, Vogan JL. 2001. An examination of zero-valent iron sources used in permeable reactive barriers. International Containment and Remediation Technology Conference and Exhibition, Orlando, FL, USA, June 10–13. Abstract 420.

    Google Scholar 

  • Larese-Casanova P, Cwiertny DM, Scherer MM. 2010. Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: Implications for contaminant reduction. Environ Sci Technol 44:3765–3771.

    CAS  Google Scholar 

  • Lee TR, Wilkin RT. 2010. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: Characterization and evaluation of phase stability. J Contam Hydrol 116:47–57.

    CAS  Google Scholar 

  • Lee W, Batchelor B. 2002. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36:5147–5154.

    CAS  Google Scholar 

  • Lee W, Batchelor B. 2002. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust. Environ Sci Technol 36:5348–5354.

    CAS  Google Scholar 

  • Lee W, Batchelor B. 2003. Reductive capacity of natural reductants. Environ Sci Technol 37:535–541.

    CAS  Google Scholar 

  • Li WF, Klabunde KJ. 1998. Ultrafine zinc and nickel, palladium, silver coated zinc particles used for reductive dehalogenation of chlorinated ethylenes in aqueous solution. Croat Chem Acta 71:853–872.

    CAS  Google Scholar 

  • Li X-Q, Elliott DW, Zhang W-X. 2006. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122.

    CAS  Google Scholar 

  • Liu J, He F, Durham E, Zhao D, Roberts CB. 2008. Polysugar-stabilized Pd nanoparticles exhibiting high catalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene. Langmuir 24:328–336.

    CAS  Google Scholar 

  • Liu Y, Phenrat T, Lowry GV. 2007. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ Sci Technol 41:7881–7887.

    CAS  Google Scholar 

  • Lowry GV. 2007. Nanomaterials for groundwater remediation. In Wiesner MR, Bottero J-Y, eds, Environmental Nanotechnology. McGraw Hill, New York, NY, USA, pp 297–336.

    Google Scholar 

  • Lowry GV, Reinhard M. 2000. Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environ Sci Technol 34:3217–3223.

    CAS  Google Scholar 

  • Macalady DL, Tratnyek PG, Grundl TJ. 1986. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems. J Contam Hydrol 1:1–28.

    CAS  Google Scholar 

  • Mak MSH, Lo IMC. 2011. Environmental life cycle assessment of permeable reactive barriers: Effects of construction methods, reactive materials and groundwater constituents. Environ Sci Technol 45:10148–10154.

    CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053.

    CAS  Google Scholar 

  • Mayer KU, Blowes DW, Frind EO. 2001. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water Resour Res 37:3091–3104.

    CAS  Google Scholar 

  • McCormick ML, Adriaens P. 2004. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environ Sci Technol 38:1045–1053.

    CAS  Google Scholar 

  • McMahon PB, Dennehy KF, Sandstrom MW. 1999. Hydraulic geochemical performance of a permeable reactive barrier containing zero-valent iron, Denver Federal Center. Ground Water 37:396–404.

    CAS  Google Scholar 

  • McNab WW, Jr, Ruiz R, Reinhard M. 2000. In-situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well: Testing and operational experiences. Environ Sci Technol 34:149–153.

    CAS  Google Scholar 

  • Miehr R, Tratnyek PG, Bandstra JZ, Scherer MM, Alowitz M, Bylaska EJ. 2004. The diversity of contaminant reduction reactions by zero-valent iron: Role of the reductate. Environ Sci Technol 38:139–147.

    CAS  Google Scholar 

  • Mueller NC, Braun J, Bruns J, Cernik M, Rissing P, Rickerby D, Nowack B. 2012. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558.

    CAS  Google Scholar 

  • Munakata N, Reinhard M. 2007. Palladium-catalyzed aqueous hydrodehalogenation in column reactors: Modeling of deactivation kinetics with sulfide and comparison of regenerants. Appl Catal B Environ 75:1–10.

    CAS  Google Scholar 

  • Newell CJ, Fisher RT, Hughes JB. 1997. Direct hydrogen addition for the in-situ biodegradation of chlorinated solvents. Proceedings, Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation Conference, Houston, TX, USA, November 12–14, pp 791–800.

    Google Scholar 

  • Newell CJ, Hughes JB, Fisher RT, Haas PE. 1998. Subsurface hydrogen addition for the in-situ bioremediation of chlorinated solvents. Proceedings, 1st International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 21–28. Battelle Press, Columbus, OH, USA, pp 47–52.

    Google Scholar 

  • Newell CJ, Haas PE, Hughes JB, Khan TA. 2000. Results from two direct hydrogen delivery field tests for enhanced dechlorination. Proceedings, 2nd International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25. Battelle Press, Columbus, OH, USA, pp 21–38.

    Google Scholar 

  • O’Hannesin SF, Gillham RW. 1998. Long-term performance of an in situ “iron wall” for remediation of VOCs. Ground Water 36:164–170.

    Google Scholar 

  • O’Loughlin EJ, Burris DR. 2004. Reduction of halogenated ethanes by green rust. Environ Toxicol Chem 23:41–48.

    Google Scholar 

  • O’Loughlin EJ, Boyanov MI, Antonopoulos DA, Kemner KM. 2011. Redox processes affecting the speciation of technetium, uranium, neptunium, and plutonium in aquatic and terrestrial environments. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1071: 477–517.

    Google Scholar 

  • Olson MR, Sale TC, Shackelford CD, Bozzini C, Skeean J. 2012. Chlorinated solvent source-zone remediation via ZVI-clay soil mixing: 1-year results. Ground Water Monit Remediat 32:63–74.

    CAS  Google Scholar 

  • Onanong S, Comfort SD, Burrow PD, Shea PJ. 2007. Using gas-phase molecular descriptors to predict dechlorination rates of chloroalkanes by zerovalent iron. Environ Sci Technol 41:1200–1205.

    CAS  Google Scholar 

  • Paul CJ, McNeil MS, Beck Jr FP, Clark PJ, Wilkin RT, Puls RW. 2003. Capstone report on the application, monitoring, and performance of permeable reactive barriers for ground-water remediation: Vol 2 – Long-Term Monitoring of PRBs: Soil and Ground Water Sampling. EPA/600/R-03/045b. U.S. Environmental Protection Agency, Washington, DC, USA.

    Google Scholar 

  • Peijnenburg WJGM, ’t Hart MJ, den Hollander HA, van de Meent D, Verboom HH, Wolfe NL. 1991. QSARs for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems. Sci Total Environ 109/110:283–300.

    Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290.

    CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton RD, Lowry GV. 2008. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814.

    CAS  Google Scholar 

  • Phenrat T, Kim H-J, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV. 2009a. Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ Sci Technol 43:5079–5085.

    CAS  Google Scholar 

  • Phenrat T, Liu Y, Tilton RD, Lowry GV. 2009b. Adsorbed polyelectrolyte coatings decrease Fe nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environ Sci Technol 43:1507–1514.

    CAS  Google Scholar 

  • Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV. 2010. Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environ Sci Technol 44:4531–4538.

    CAS  Google Scholar 

  • Phenrat T, Cihan A, Kim H-J, Mital M, Illangasekare T, Lowry GV. 2010. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: Effects of particle concentration, Fe0 content, and coatings. Environ Sci Technol 44:9086–9093.

    CAS  Google Scholar 

  • Phenrat T, Fagerlund F, Illangasekare T, Lowry GV, Tilton RD. 2011. Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environ Sci Technol 45:6102–6109.

    CAS  Google Scholar 

  • Powell RM, Powell PD, Puls DW. 2002. Economic analysis of the implementation of permeable reactive barriers for remediation of contaminated groundwater. EPA/600/R-02/034. U.S. Environmental Protection Agency, Ada, OK, USA. 31 p.

    Google Scholar 

  • Puls RW, Paul CJ, Powell RM. 1996. Remediation of Chromate-Contaminated Groundwater Using Zero-Valent Iron: Field Test at USCG Support Center, Elizabeth City, North Carolina. Final Report. EPA/600/R-02/034. U.S. Environmental Protection Agency, Washington, DC, USA. 19 p.

    Google Scholar 

  • Puls RW, Blowes DW, Gillham RW. 1999a. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J Hazard Mater 68:109–124.

    CAS  Google Scholar 

  • Puls RW, Paul CJ, Powell RM. 1999b. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl Geochem 14:989–1000.

    CAS  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A, Holdsworth T. 2005. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318.

    CAS  Google Scholar 

  • Rabideau AJ, Shen P, Khandelwal A. 1999. Feasibility of amending slurry walls with zero-valent iron. J Geotech Geoenviron Eng 125:330–333.

    CAS  Google Scholar 

  • Ramsburg CA, Pennell KD. 2001. Experimental and economic assessment of two surfactant formulations for source zone remediation at a former dry cleaning facility. Ground Water Monit Remediat 21:68–82.

    CAS  Google Scholar 

  • Ramsburg CA, Pennell KD. 2002. Density-modified displacement for DNAPL source zone remediation: density conversion and recovery in heterogeneous aquifer cells. Environ Sci Technol 36:3176–3187.

    CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Kibbey TC, Hayes KF. 2004. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones. J Contam Hydrol 74:105–131.

    CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Abriola LM, Daniels G, Drummond CD, Gamache M, Hsu H-L, Petrovskis EA, Rathfelder KM, Ryder JL, Yavaraski TP. 2005. Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 2. System operation and evaluation. Environ Sci Technol 39:1791–801.

    CAS  Google Scholar 

  • Reinhard M, Hopkins GD, Cunningham J, Lebron CA. 2006. From laboratory study to full-scale application: Treating groundwater for TCE removal using catalyzed reductive dechlorination. Proceedings, 232nd ACS National Meeting, September 10–14, San Francisco, CA, USA. American Chemical Society. ENVR-68.

    Google Scholar 

  • Roberts AL, Jeffers PM, Wolfe NL, Gschwend PM. 1993. Structure-reactivity relationships in dehydrohalogenation reactions of polychlorinated and polybrominated alkanes. Crit Rev Environ Sci Technol 23:1–39.

    CAS  Google Scholar 

  • Roy-Perreault A, Kueper BH, Rawson J. 2005. Formation and stability of polychlorinated biphenyl pickering emulsions. J Contam Hydrol 77:17–39.

    CAS  Google Scholar 

  • Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyjaszewski K, Tilton RD, Lowry GV. 2005. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5:2489–2494.

    CAS  Google Scholar 

  • Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV. 2007. Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24:45–57.

    CAS  Google Scholar 

  • Scherer MM, Richter S, Valentine RL, Alvarez PJJ. 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Environ Sci Technol 30:363–411.

    CAS  Google Scholar 

  • Schüth C, Disser S, Schüth F, Reinhard M. 2000. Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Appl Catal B Environ 28:147–152.

    Google Scholar 

  • Schwarzenbach RP, Stierli R, Lanz K, Zeyer J. 1990. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ Sci Technol 24:1566–1574.

    CAS  Google Scholar 

  • Scott TB, Popescu IC, Crane RA, Noubactep C. 2011. Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. J Hazard Mater 186:280–287.

    CAS  Google Scholar 

  • Shackelford CD, Sale TC, Liberati MR. 2005. In-situ remediation of chlorinated solvents using zero valent iron and clay mixtures: A case history. Proceedings, 18th GRI Conference held in conjunction with Geo-Frontiers 2005, January 24–26, Austin, TX, USA. Geo-Institute of the American Society of Civil Engineers, Reston, VA, USA, pp 3699–3707.

    Google Scholar 

  • Shen X, Zhao L, Ding Y, Liu B, Zeng H, Zhong L, Li X. 2011. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. J Hazard Mater 186:1773–1780.

    CAS  Google Scholar 

  • Shi Z, Nurmi JT, Tratnyek PG. 2011. Effects of nano zero-valent iron (nZVI) on oxidation-reduction potential (ORP). Environ Sci Technol 45:1586–1592.

    CAS  Google Scholar 

  • Simpkin TJ, Palaia T, Petri BG, Smith BA. 2011. Oxidant delivery approaches and contingency planning. In Siegrist RL, Crimi M, Simpkin TJ, eds, In Situ Chemical Oxidation for Groundwater Remediation. Springer, New York, NY, USA, pp 449–480.

    Google Scholar 

  • Smolen JM, Weber EJ, Tratnyek PG. 1999. Molecular probe techniques for the identification of reductants in sediments: Evidence for reduction of 2-chloroacetophenone by hydride transfer. Environ Sci Technol 33:440–445.

    CAS  Google Scholar 

  • Sorel D, Warner SY, Longino BL, Honniball JH, Hamilton LA. 2003. Performance monitoring and dissolved hydrogen measurements at a permeable zero valent iron reactive barrier. In Henry SM, Warner SD, eds, Chlorinated Solvent and DNAPL Remediation. American Chemical Society, Washington, DC, USA, ACS Symp Ser 837:278–285.

    Google Scholar 

  • Sposito G. 2011. Electron shuttling by natural organic matter: Twenty years after. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1071:113–127.

    Google Scholar 

  • Strathmann TJ. 2011. Redox reactivity of organically complexed iron(II) species with aquatic contaminants. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1071:283–313.

    Google Scholar 

  • Stroo HF, Leeson A, Marqusee J, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennell KD, Lebron CA, Unger M. 2012. Chlorinated ethene source remediation: Lessons learned. Environ Sci Technol 46:6438–6447.

    CAS  Google Scholar 

  • Stroo HF, Ward CH. 2010. Future directions and research needs for chlorinated solvent plumes. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 699–725.

    Google Scholar 

  • Struyk Z, Sposito G. 2001. Redox properties of standard humic acids. Geoderma 102:329–346.

    CAS  Google Scholar 

  • Szecsody JE, Fruchter JS, Sklarew DS, Evans JC. 2000. In Situ Redox Manipulation of Subsurface Sediments from Fort Lewis, Washington: Iron reduction and TCE Dechlorination Mechanisms. Report PNNL-13178. Pacific Northwest National Laboratory, Richland, WA, USA. 89 p.

    Google Scholar 

  • Szecsody JE, Fruchter JS, Williams MD, Vermeul VR, Sklarew D. 2004. In situ chemical reduction of aquifer sediments: enhancement of reactive iron phases and TCE dechlorination. Environ Sci Technol 38:4656–4663.

    CAS  Google Scholar 

  • Szulczewski MD, Helmke PA, Bleam WF. 2001. XANES spectroscopy studies of Cr(VI) reduction by thiols in organosulfur compounds and humic substances. Environ Sci Technol 35:1134–1141.

    CAS  Google Scholar 

  • Támara M, Butler EC. 2004. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environ Sci Technol 38:1866–1876.

    Google Scholar 

  • Totten LA, Assaf-Anid NM. 2003. Abiotic dehalogenation by metals. In Häggblom MM, Bossert ID, Bossert ID, eds, Dehalogenation: Microbial Processes and Environmental Applications. Kluwer, Boston, MA, USA, pp 261–290.

    Google Scholar 

  • Tratnyek PG. 2010. Chemical reductants for ISCR: The potential for improvement. Proceedings, 7th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27. Battelle Press, Columbus, OH, USA, D-054.

    Google Scholar 

  • Tratnyek PG, Johnson RL. 2006. Nanotechnologies for environmental cleanup. NanoToday 1:44–48.

    Google Scholar 

  • Tratnyek PG, Macalady DL. 1989. Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems. J Agric Food Chem 37:248–254.

    CAS  Google Scholar 

  • Tratnyek PG, Macalady DL. 2000. Oxidation-reduction reactions in the aquatic environment. In Mackay D, Boethling RS, eds, Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences. Lewis, Boca Raton, FL, USA, pp 383–415.

    Google Scholar 

  • Tratnyek PG, Johnson RL, Johnson TL, Miehr R. 2001. In Situ Remediation of Explosives Contaminated Ground-Water with Sequential Reactive Treatment Zones. SERDP Final Report. Project CU-1176. Strategic Environmental Research and Development Program, Alexandria, VA, USA. 32 p.

    Google Scholar 

  • Tratnyek PG, Scherer MM, Johnson TJ, Matheson LJ. 2003a. Permeable reactive barriers of iron and other zero-valent metals. In Tarr MA, ed, Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications. Marcel Dekker, New York, NY, USA, pp 371–421.

    Google Scholar 

  • Tratnyek PG, Weber EJ, Schwarzenbach RP. 2003b. Quantitative structure-activity relationships for chemical reductions of organic contaminants. Environ Toxicol Chem 22:1733–1742.

    CAS  Google Scholar 

  • Tratnyek PG, Salter AJ, Nurmi JT, Sarathy V. 2010. Environmental applications of zerovalent metals: Iron vs. zinc. In Erickson LE, Koodali RT, Richards RM, eds, Nanoscale Materials in Chemistry: Environmental Applications. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1045:165–178.

    Google Scholar 

  • Tratnyek PG, Salter-Blanc AJ, Nurmi JT, Amonette JE, Liu J, Wang C, Dohnalkova A, Baer DR. 2011. Reactivity of zerovalent metals in aquatic media: Effects of organic surface coatings. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1071:381–406.

    Google Scholar 

  • Truex MJ, Macbeth TW, Vermeul VR, Fritz BG, Mendoza DP, Mackley RD, Wietsma TW, Sandberg G, Powell T, Powers J, Pitre E, Michalsen M, Ballock-Dixon SJ, Zhong L, Oostrom M. 2011a. Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation. Environ Sci Technol 45:5346–5351.

    CAS  Google Scholar 

  • Truex MJ, Vermeul VR, Mendoza DP, Fritz BG, Mackley RD, Oostrom M, Wietsma TW, Macbeth TW. 2011b. Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monit Remediat 31:50–58.

    CAS  Google Scholar 

  • Tsukano Y. 1986. Transformations of selected pesticides in flooded rice-field soils: A review. J Contam Hydrol 1:47–63.

    CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1999. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers. Report EPA 542-R-99-002. Washington, DC, USA. 114 p.

    Google Scholar 

  • Uchimiya M, Stone AT. 2009. Reversible redox chemistry of quinones: Impact on biogeochemical cycles. Chemosphere 77: 451–458.

    CAS  Google Scholar 

  • Urynowicz MA, Balu B, Udayasankar U. 2008. Kinetics of natural oxidant demand by permanganate in aquifer solids. J Contam Hydrol 96:187–194.

    CAS  Google Scholar 

  • Van der Zee FP, Cervantes FJ. 2009. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review. Biotechnol Adv 27:256–277.

    Google Scholar 

  • Van Nooten T, Springael D, Bastiaens L. 2008. Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers. Environ Sci Technol 42:1680–1686.

    Google Scholar 

  • Vermeul VR, Williams MD, Evans JC, Szecsody JE, Bjornstad BN, Liikala TL. 2000. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center. Final Report PNNL-13357. Pacific Northwest National Laboratory, Richland, WA, USA. 330 p.

    Google Scholar 

  • Vidic RD. 2001. Permeable reactive barriers: Case study review. GWRTAC E-Series Technology Evaluation Report TE-01-01. Ground Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA. 49 p.

    Google Scholar 

  • Wadley SLS, Gillham RW, Gui L. 2005. Remediation of DNAPL source zones with granular iron: Laboratory and field tests. Ground Water 43:9–18.

    CAS  Google Scholar 

  • Wang S, Mulligan CN. 2004. An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57:1079–1089.

    Google Scholar 

  • Wang Y, Sakamoto Y, Kamiya Y. 2009. Remediation of actual groundwater polluted with nitrate by the catalytic reduction over copper-palladium supported on active carbon. Appl Catal A: General 361:123–129.

    Google Scholar 

  • Warner SD, Sorel D. 2003. Ten years of permeable reactive barriers: Lessons learned and future expectations. In Henry SM, Warner SD, eds, Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup. American Chemical Society, Washington, DC, USA, ACS Symp Ser 837:36–50.

    Google Scholar 

  • Water Science and Technology Board. 2004. Contaminants in the Subsurface: Source Zone Assessment and Remediation. U.S. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • Wilkin RT, Puls RW. 2003. Capstone Report on the application, monitoring, and performance of permeable reactive barriers for ground-water remediation: Vol 1 – Performance evaluations at two sites. EPA 600-R-03–045a. U.S. Environmental Protection Agency, Cincinnati, OH, USA.

    Google Scholar 

  • Wilkin RT, Puls RW, Sewell GW. 2003. Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects. Ground Water 22:165–168.

    Google Scholar 

  • Wilkin RT, Su CM, Ford RG, Paul CJ. 2005. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ Sci Technol 39:4599–4605.

    CAS  Google Scholar 

  • Wilson JT. 2003. Abiotic Reactions May be the Most Important Mechanism in Natural Attenuation of Chlorinated Solvents. AFCEE Technology Transfer Workshop, Brooks AFB, San Antonio, TX, USA, February 24–27.

    Google Scholar 

  • Wilson JT, Kampbell DH, Ferrey M, Estuesta P. 2001. Evaluation of the protocol for the natural attenuation of chlorinated solvents: Case study at the Twin Cities Army Ammunition Plant. Office of Research and Development NRMRL, U.S. Environmental Protection Agency, Ada, OK, USA.

    Google Scholar 

  • Wolfe NL, Macalady DL. 1992. New perspectives in aquatic redox chemistry: Abiotic transformations of pollutants in groundwater and sediments. J Contam Hydrol 9:17–34.

    CAS  Google Scholar 

  • Xia K, Weesner F, Bleam WF, Bloom PR, Skyllberg UL, Helmke PA. 1998. XANES studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Sci Soc Am J 62:1240–1246.

    CAS  Google Scholar 

  • Xu X, Thomson NR. 2008. Estimation of the maximum consumption of permanganate by aquifer solids using a modified chemical oxygen demand test. J Environ Eng 134:353–361.

    CAS  Google Scholar 

  • Xu X, Thomson NR. 2009. A long-term bench-scale investigation of permanganate consumption by aquifer materials. J Contam Hydrol 110:73–86.

    CAS  Google Scholar 

  • Yabusaki S, Cantrell K, Sass B, Steefel C. 2001. Multicomponent reactive transport in an in situ zero-valent iron cell. Environ Sci Technol 35:1493–1503.

    CAS  Google Scholar 

  • Zhang H, Weber EJ. 2009. Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments. Environ Sci Technol 43:1042–1048.

    CAS  Google Scholar 

  • Zhang H, Colón D, Kenneke JF, Weber EJ. 2011. The use of chemical probes for the characterization of the predominant abiotic reductants in anaerobic sediments. In Tratnyek PG, Grundl TJ, Haderlein SB, eds, Aquatic Redox Chemistry. American Chemical Society, Washington, DC, USA, ACS Symp Ser 1071:539–557.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to recognize the helpful and substantive input from James E. Szecsody (Pacific Northwest National Laboratory) and permission to reproduce figures from Erica Becvar (AFCEE), Patrick Evans (CDM), and Thomas Hofstetter (EAWAG).

Portions of this work were funded by the U.S. Department of Defense, Strategic Environmental Research and Development Program (SERDP), Department of Energy, Subsurface Biogeochemical Research (SBR) Program, and the Environmental Protection Agency and National Science Foundation (Center for Environmental Implications of Nanotechnology (CEINT)). This document has not been reviewed by any of the sponsoring agencies and therefore it does not necessarily reflect their views and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tratnyek, P.G., Johnson, R.L., Lowry, G.V., Brown, R.A. (2014). IN SITU Chemical Reduction For Source Remediation. In: Kueper, B., Stroo, H., Vogel, C., Ward, C. (eds) Chlorinated Solvent Source Zone Remediation. SERDP ESTCP Environmental Remediation Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6922-3_10

Download citation

Publish with us

Policies and ethics